Aromātai
709
Tauwehe
709
Tohaina
Kua tāruatia ki te papatopenga
625+\frac{6-\frac{3}{4}}{2}\times 2^{5}
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
625+\frac{\frac{24}{4}-\frac{3}{4}}{2}\times 2^{5}
Me tahuri te 6 ki te hautau \frac{24}{4}.
625+\frac{\frac{24-3}{4}}{2}\times 2^{5}
Tā te mea he rite te tauraro o \frac{24}{4} me \frac{3}{4}, me tango rāua mā te tango i ō raua taurunga.
625+\frac{\frac{21}{4}}{2}\times 2^{5}
Tangohia te 3 i te 24, ka 21.
625+\frac{21}{4\times 2}\times 2^{5}
Tuhia te \frac{\frac{21}{4}}{2} hei hautanga kotahi.
625+\frac{21}{8}\times 2^{5}
Whakareatia te 4 ki te 2, ka 8.
625+\frac{21}{8}\times 32
Tātaihia te 2 mā te pū o 5, kia riro ko 32.
625+\frac{21\times 32}{8}
Tuhia te \frac{21}{8}\times 32 hei hautanga kotahi.
625+\frac{672}{8}
Whakareatia te 21 ki te 32, ka 672.
625+84
Whakawehea te 672 ki te 8, kia riro ko 84.
709
Tāpirihia te 625 ki te 84, ka 709.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}