Aromātai
-\frac{625}{3}\approx -208.333333333
Tauwehe
-\frac{625}{3} = -208\frac{1}{3} = -208.33333333333334
Tohaina
Kua tāruatia ki te papatopenga
25-8\times \frac{5}{6}\times 35
Whakawehe -8 ki te \frac{6}{5} mā te whakarea -8 ki te tau huripoki o \frac{6}{5}.
25+\frac{-8\times 5}{6}\times 35
Tuhia te -8\times \frac{5}{6} hei hautanga kotahi.
25+\frac{-40}{6}\times 35
Whakareatia te -8 ki te 5, ka -40.
25-\frac{20}{3}\times 35
Whakahekea te hautanga \frac{-40}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
25+\frac{-20\times 35}{3}
Tuhia te -\frac{20}{3}\times 35 hei hautanga kotahi.
25+\frac{-700}{3}
Whakareatia te -20 ki te 35, ka -700.
25-\frac{700}{3}
Ka taea te hautanga \frac{-700}{3} te tuhi anō ko -\frac{700}{3} mā te tango i te tohu tōraro.
\frac{75}{3}-\frac{700}{3}
Me tahuri te 25 ki te hautau \frac{75}{3}.
\frac{75-700}{3}
Tā te mea he rite te tauraro o \frac{75}{3} me \frac{700}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{625}{3}
Tangohia te 700 i te 75, ka -625.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}