Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8\left(3y-2y^{2}\right)
Tauwehea te 8.
y\left(3-2y\right)
Whakaarohia te 3y-2y^{2}. Tauwehea te y.
8y\left(-2y+3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-16y^{2}+24y=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-24±\sqrt{24^{2}}}{2\left(-16\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-24±24}{2\left(-16\right)}
Tuhia te pūtakerua o te 24^{2}.
y=\frac{-24±24}{-32}
Whakareatia 2 ki te -16.
y=\frac{0}{-32}
Nā, me whakaoti te whārite y=\frac{-24±24}{-32} ina he tāpiri te ±. Tāpiri -24 ki te 24.
y=0
Whakawehe 0 ki te -32.
y=-\frac{48}{-32}
Nā, me whakaoti te whārite y=\frac{-24±24}{-32} ina he tango te ±. Tango 24 mai i -24.
y=\frac{3}{2}
Whakahekea te hautanga \frac{-48}{-32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
-16y^{2}+24y=-16y\left(y-\frac{3}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te \frac{3}{2} mō te x_{2}.
-16y^{2}+24y=-16y\times \frac{-2y+3}{-2}
Tango \frac{3}{2} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-16y^{2}+24y=8y\left(-2y+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te -16 me te -2.