Aromātai
270
Tauwehe
2\times 3^{3}\times 5
Tohaina
Kua tāruatia ki te papatopenga
243+\frac{81}{5}+\frac{243}{15}\times \frac{2}{3}
Whakahekea te hautanga \frac{243}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1215}{5}+\frac{81}{5}+\frac{243}{15}\times \frac{2}{3}
Me tahuri te 243 ki te hautau \frac{1215}{5}.
\frac{1215+81}{5}+\frac{243}{15}\times \frac{2}{3}
Tā te mea he rite te tauraro o \frac{1215}{5} me \frac{81}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1296}{5}+\frac{243}{15}\times \frac{2}{3}
Tāpirihia te 1215 ki te 81, ka 1296.
\frac{1296}{5}+\frac{81}{5}\times \frac{2}{3}
Whakahekea te hautanga \frac{243}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1296}{5}+\frac{81\times 2}{5\times 3}
Me whakarea te \frac{81}{5} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1296}{5}+\frac{162}{15}
Mahia ngā whakarea i roto i te hautanga \frac{81\times 2}{5\times 3}.
\frac{1296}{5}+\frac{54}{5}
Whakahekea te hautanga \frac{162}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1296+54}{5}
Tā te mea he rite te tauraro o \frac{1296}{5} me \frac{54}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1350}{5}
Tāpirihia te 1296 ki te 54, ka 1350.
270
Whakawehea te 1350 ki te 5, kia riro ko 270.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}