Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

72=x\times 40x
Whakareatia ngā taha e rua o te whārite ki te 3.
72=x^{2}\times 40
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 40=72
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{72}{40}
Whakawehea ngā taha e rua ki te 40.
x^{2}=\frac{9}{5}
Whakahekea te hautanga \frac{72}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=\frac{3\sqrt{5}}{5} x=-\frac{3\sqrt{5}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
72=x\times 40x
Whakareatia ngā taha e rua o te whārite ki te 3.
72=x^{2}\times 40
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 40=72
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}\times 40-72=0
Tangohia te 72 mai i ngā taha e rua.
40x^{2}-72=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 40\left(-72\right)}}{2\times 40}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 40 mō a, 0 mō b, me -72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 40\left(-72\right)}}{2\times 40}
Pūrua 0.
x=\frac{0±\sqrt{-160\left(-72\right)}}{2\times 40}
Whakareatia -4 ki te 40.
x=\frac{0±\sqrt{11520}}{2\times 40}
Whakareatia -160 ki te -72.
x=\frac{0±48\sqrt{5}}{2\times 40}
Tuhia te pūtakerua o te 11520.
x=\frac{0±48\sqrt{5}}{80}
Whakareatia 2 ki te 40.
x=\frac{3\sqrt{5}}{5}
Nā, me whakaoti te whārite x=\frac{0±48\sqrt{5}}{80} ina he tāpiri te ±.
x=-\frac{3\sqrt{5}}{5}
Nā, me whakaoti te whārite x=\frac{0±48\sqrt{5}}{80} ina he tango te ±.
x=\frac{3\sqrt{5}}{5} x=-\frac{3\sqrt{5}}{5}
Kua oti te whārite te whakatau.