Whakaoti mō x
x=6\left(\sqrt{2}-2\right)\approx -3.514718626
Graph
Tohaina
Kua tāruatia ki te papatopenga
24+x-\sqrt{2}x=18\sqrt{2}
Tangohia te \sqrt{2}x mai i ngā taha e rua.
x-\sqrt{2}x=18\sqrt{2}-24
Tangohia te 24 mai i ngā taha e rua.
\left(1-\sqrt{2}\right)x=18\sqrt{2}-24
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(1-\sqrt{2}\right)x}{1-\sqrt{2}}=\frac{18\sqrt{2}-24}{1-\sqrt{2}}
Whakawehea ngā taha e rua ki te 1-\sqrt{2}.
x=\frac{18\sqrt{2}-24}{1-\sqrt{2}}
Mā te whakawehe ki te 1-\sqrt{2} ka wetekia te whakareanga ki te 1-\sqrt{2}.
x=6\sqrt{2}-12
Whakawehe 18\sqrt{2}-24 ki te 1-\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}