Aromātai
\frac{145}{6}\approx 24.166666667
Tauwehe
\frac{5 \cdot 29}{2 \cdot 3} = 24\frac{1}{6} = 24.166666666666668
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
24+ \frac{ 1 }{ 3 } \times \frac{ 3 }{ 2 } - \frac{ 1 }{ 3 }
Tohaina
Kua tāruatia ki te papatopenga
24+\frac{1\times 3}{3\times 2}-\frac{1}{3}
Me whakarea te \frac{1}{3} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
24+\frac{1}{2}-\frac{1}{3}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{48}{2}+\frac{1}{2}-\frac{1}{3}
Me tahuri te 24 ki te hautau \frac{48}{2}.
\frac{48+1}{2}-\frac{1}{3}
Tā te mea he rite te tauraro o \frac{48}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{49}{2}-\frac{1}{3}
Tāpirihia te 48 ki te 1, ka 49.
\frac{147}{6}-\frac{2}{6}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{49}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
\frac{147-2}{6}
Tā te mea he rite te tauraro o \frac{147}{6} me \frac{2}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{145}{6}
Tangohia te 2 i te 147, ka 145.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}