Whakaoti mō x
x=1
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
24x^{2}-72x+48=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 24\times 48}}{2\times 24}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 24 mō a, -72 mō b, me 48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-72\right)±\sqrt{5184-4\times 24\times 48}}{2\times 24}
Pūrua -72.
x=\frac{-\left(-72\right)±\sqrt{5184-96\times 48}}{2\times 24}
Whakareatia -4 ki te 24.
x=\frac{-\left(-72\right)±\sqrt{5184-4608}}{2\times 24}
Whakareatia -96 ki te 48.
x=\frac{-\left(-72\right)±\sqrt{576}}{2\times 24}
Tāpiri 5184 ki te -4608.
x=\frac{-\left(-72\right)±24}{2\times 24}
Tuhia te pūtakerua o te 576.
x=\frac{72±24}{2\times 24}
Ko te tauaro o -72 ko 72.
x=\frac{72±24}{48}
Whakareatia 2 ki te 24.
x=\frac{96}{48}
Nā, me whakaoti te whārite x=\frac{72±24}{48} ina he tāpiri te ±. Tāpiri 72 ki te 24.
x=2
Whakawehe 96 ki te 48.
x=\frac{48}{48}
Nā, me whakaoti te whārite x=\frac{72±24}{48} ina he tango te ±. Tango 24 mai i 72.
x=1
Whakawehe 48 ki te 48.
x=2 x=1
Kua oti te whārite te whakatau.
24x^{2}-72x+48=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
24x^{2}-72x+48-48=-48
Me tango 48 mai i ngā taha e rua o te whārite.
24x^{2}-72x=-48
Mā te tango i te 48 i a ia ake anō ka toe ko te 0.
\frac{24x^{2}-72x}{24}=-\frac{48}{24}
Whakawehea ngā taha e rua ki te 24.
x^{2}+\left(-\frac{72}{24}\right)x=-\frac{48}{24}
Mā te whakawehe ki te 24 ka wetekia te whakareanga ki te 24.
x^{2}-3x=-\frac{48}{24}
Whakawehe -72 ki te 24.
x^{2}-3x=-2
Whakawehe -48 ki te 24.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
Tāpiri -2 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Whakarūnātia.
x=2 x=1
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}