Tauwehe
24\left(x-2\right)\left(x-1\right)
Aromātai
24\left(x-2\right)\left(x-1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
24\left(x^{2}-3x+2\right)
Tauwehea te 24.
a+b=-3 ab=1\times 2=2
Whakaarohia te x^{2}-3x+2. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-2 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-2x\right)+\left(-x+2\right)
Tuhia anō te x^{2}-3x+2 hei \left(x^{2}-2x\right)+\left(-x+2\right).
x\left(x-2\right)-\left(x-2\right)
Tauwehea te x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-2\right)\left(x-1\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
24\left(x-2\right)\left(x-1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
24x^{2}-72x+48=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 24\times 48}}{2\times 24}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-72\right)±\sqrt{5184-4\times 24\times 48}}{2\times 24}
Pūrua -72.
x=\frac{-\left(-72\right)±\sqrt{5184-96\times 48}}{2\times 24}
Whakareatia -4 ki te 24.
x=\frac{-\left(-72\right)±\sqrt{5184-4608}}{2\times 24}
Whakareatia -96 ki te 48.
x=\frac{-\left(-72\right)±\sqrt{576}}{2\times 24}
Tāpiri 5184 ki te -4608.
x=\frac{-\left(-72\right)±24}{2\times 24}
Tuhia te pūtakerua o te 576.
x=\frac{72±24}{2\times 24}
Ko te tauaro o -72 ko 72.
x=\frac{72±24}{48}
Whakareatia 2 ki te 24.
x=\frac{96}{48}
Nā, me whakaoti te whārite x=\frac{72±24}{48} ina he tāpiri te ±. Tāpiri 72 ki te 24.
x=2
Whakawehe 96 ki te 48.
x=\frac{48}{48}
Nā, me whakaoti te whārite x=\frac{72±24}{48} ina he tango te ±. Tango 24 mai i 72.
x=1
Whakawehe 48 ki te 48.
24x^{2}-72x+48=24\left(x-2\right)\left(x-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te 1 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}