24 m + 16 \mu + 36 \mu = (6
Whakaoti mō m
m=-\frac{13\mu }{6}+\frac{1}{4}
Whakaoti mō μ
\mu =-\frac{6m}{13}+\frac{3}{26}
Tohaina
Kua tāruatia ki te papatopenga
24m+52\mu =6
Pahekotia te 16\mu me 36\mu , ka 52\mu .
24m=6-52\mu
Tangohia te 52\mu mai i ngā taha e rua.
\frac{24m}{24}=\frac{6-52\mu }{24}
Whakawehea ngā taha e rua ki te 24.
m=\frac{6-52\mu }{24}
Mā te whakawehe ki te 24 ka wetekia te whakareanga ki te 24.
m=-\frac{13\mu }{6}+\frac{1}{4}
Whakawehe 6-52\mu ki te 24.
24m+52\mu =6
Pahekotia te 16\mu me 36\mu , ka 52\mu .
52\mu =6-24m
Tangohia te 24m mai i ngā taha e rua.
\frac{52\mu }{52}=\frac{6-24m}{52}
Whakawehea ngā taha e rua ki te 52.
\mu =\frac{6-24m}{52}
Mā te whakawehe ki te 52 ka wetekia te whakareanga ki te 52.
\mu =-\frac{6m}{13}+\frac{3}{26}
Whakawehe 6-24m ki te 52.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}