Whakaoti mō a
a=\frac{\sqrt{1887}i}{12}+\frac{5}{4}\approx 1.25+3.619967771i
a=-\frac{\sqrt{1887}i}{12}+\frac{5}{4}\approx 1.25-3.619967771i
Tohaina
Kua tāruatia ki te papatopenga
24a^{2}-60a+352=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 24\times 352}}{2\times 24}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 24 mō a, -60 mō b, me 352 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-60\right)±\sqrt{3600-4\times 24\times 352}}{2\times 24}
Pūrua -60.
a=\frac{-\left(-60\right)±\sqrt{3600-96\times 352}}{2\times 24}
Whakareatia -4 ki te 24.
a=\frac{-\left(-60\right)±\sqrt{3600-33792}}{2\times 24}
Whakareatia -96 ki te 352.
a=\frac{-\left(-60\right)±\sqrt{-30192}}{2\times 24}
Tāpiri 3600 ki te -33792.
a=\frac{-\left(-60\right)±4\sqrt{1887}i}{2\times 24}
Tuhia te pūtakerua o te -30192.
a=\frac{60±4\sqrt{1887}i}{2\times 24}
Ko te tauaro o -60 ko 60.
a=\frac{60±4\sqrt{1887}i}{48}
Whakareatia 2 ki te 24.
a=\frac{60+4\sqrt{1887}i}{48}
Nā, me whakaoti te whārite a=\frac{60±4\sqrt{1887}i}{48} ina he tāpiri te ±. Tāpiri 60 ki te 4i\sqrt{1887}.
a=\frac{\sqrt{1887}i}{12}+\frac{5}{4}
Whakawehe 60+4i\sqrt{1887} ki te 48.
a=\frac{-4\sqrt{1887}i+60}{48}
Nā, me whakaoti te whārite a=\frac{60±4\sqrt{1887}i}{48} ina he tango te ±. Tango 4i\sqrt{1887} mai i 60.
a=-\frac{\sqrt{1887}i}{12}+\frac{5}{4}
Whakawehe 60-4i\sqrt{1887} ki te 48.
a=\frac{\sqrt{1887}i}{12}+\frac{5}{4} a=-\frac{\sqrt{1887}i}{12}+\frac{5}{4}
Kua oti te whārite te whakatau.
24a^{2}-60a+352=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
24a^{2}-60a+352-352=-352
Me tango 352 mai i ngā taha e rua o te whārite.
24a^{2}-60a=-352
Mā te tango i te 352 i a ia ake anō ka toe ko te 0.
\frac{24a^{2}-60a}{24}=-\frac{352}{24}
Whakawehea ngā taha e rua ki te 24.
a^{2}+\left(-\frac{60}{24}\right)a=-\frac{352}{24}
Mā te whakawehe ki te 24 ka wetekia te whakareanga ki te 24.
a^{2}-\frac{5}{2}a=-\frac{352}{24}
Whakahekea te hautanga \frac{-60}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
a^{2}-\frac{5}{2}a=-\frac{44}{3}
Whakahekea te hautanga \frac{-352}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
a^{2}-\frac{5}{2}a+\left(-\frac{5}{4}\right)^{2}=-\frac{44}{3}+\left(-\frac{5}{4}\right)^{2}
Whakawehea te -\frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{4}. Nā, tāpiria te pūrua o te -\frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-\frac{5}{2}a+\frac{25}{16}=-\frac{44}{3}+\frac{25}{16}
Pūruatia -\frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}-\frac{5}{2}a+\frac{25}{16}=-\frac{629}{48}
Tāpiri -\frac{44}{3} ki te \frac{25}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a-\frac{5}{4}\right)^{2}=-\frac{629}{48}
Tauwehea a^{2}-\frac{5}{2}a+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{4}\right)^{2}}=\sqrt{-\frac{629}{48}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-\frac{5}{4}=\frac{\sqrt{1887}i}{12} a-\frac{5}{4}=-\frac{\sqrt{1887}i}{12}
Whakarūnātia.
a=\frac{\sqrt{1887}i}{12}+\frac{5}{4} a=-\frac{\sqrt{1887}i}{12}+\frac{5}{4}
Me tāpiri \frac{5}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}