Tauwehe
\left(x-8\right)\left(x-3\right)
Aromātai
\left(x-8\right)\left(x-3\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-11x+24
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-11 ab=1\times 24=24
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-24 -2,-12 -3,-8 -4,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Tātaihia te tapeke mō ia takirua.
a=-8 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(x^{2}-8x\right)+\left(-3x+24\right)
Tuhia anō te x^{2}-11x+24 hei \left(x^{2}-8x\right)+\left(-3x+24\right).
x\left(x-8\right)-3\left(x-8\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-8\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}-11x+24=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 24}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 24}}{2}
Pūrua -11.
x=\frac{-\left(-11\right)±\sqrt{121-96}}{2}
Whakareatia -4 ki te 24.
x=\frac{-\left(-11\right)±\sqrt{25}}{2}
Tāpiri 121 ki te -96.
x=\frac{-\left(-11\right)±5}{2}
Tuhia te pūtakerua o te 25.
x=\frac{11±5}{2}
Ko te tauaro o -11 ko 11.
x=\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{11±5}{2} ina he tāpiri te ±. Tāpiri 11 ki te 5.
x=8
Whakawehe 16 ki te 2.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{11±5}{2} ina he tango te ±. Tango 5 mai i 11.
x=3
Whakawehe 6 ki te 2.
x^{2}-11x+24=\left(x-8\right)\left(x-3\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 8 mō te x_{1} me te 3 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}