Whakaoti mō x
x=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
24-3x-12=6\left(2x+12\right)
Hei kimi i te tauaro o 3x+12, kimihia te tauaro o ia taurangi.
12-3x=6\left(2x+12\right)
Tangohia te 12 i te 24, ka 12.
12-3x=12x+72
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 2x+12.
12-3x-12x=72
Tangohia te 12x mai i ngā taha e rua.
12-15x=72
Pahekotia te -3x me -12x, ka -15x.
-15x=72-12
Tangohia te 12 mai i ngā taha e rua.
-15x=60
Tangohia te 12 i te 72, ka 60.
x=\frac{60}{-15}
Whakawehea ngā taha e rua ki te -15.
x=-4
Whakawehea te 60 ki te -15, kia riro ko -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}