Whakaoti mō x (complex solution)
x=\frac{-23+\sqrt{47}i}{24}\approx -0.958333333+0.285652275i
x=\frac{-\sqrt{47}i-23}{24}\approx -0.958333333-0.285652275i
Graph
Tohaina
Kua tāruatia ki te papatopenga
24x^{2}+46x+24=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-46±\sqrt{46^{2}-4\times 24\times 24}}{2\times 24}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 24 mō a, 46 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-46±\sqrt{2116-4\times 24\times 24}}{2\times 24}
Pūrua 46.
x=\frac{-46±\sqrt{2116-96\times 24}}{2\times 24}
Whakareatia -4 ki te 24.
x=\frac{-46±\sqrt{2116-2304}}{2\times 24}
Whakareatia -96 ki te 24.
x=\frac{-46±\sqrt{-188}}{2\times 24}
Tāpiri 2116 ki te -2304.
x=\frac{-46±2\sqrt{47}i}{2\times 24}
Tuhia te pūtakerua o te -188.
x=\frac{-46±2\sqrt{47}i}{48}
Whakareatia 2 ki te 24.
x=\frac{-46+2\sqrt{47}i}{48}
Nā, me whakaoti te whārite x=\frac{-46±2\sqrt{47}i}{48} ina he tāpiri te ±. Tāpiri -46 ki te 2i\sqrt{47}.
x=\frac{-23+\sqrt{47}i}{24}
Whakawehe -46+2i\sqrt{47} ki te 48.
x=\frac{-2\sqrt{47}i-46}{48}
Nā, me whakaoti te whārite x=\frac{-46±2\sqrt{47}i}{48} ina he tango te ±. Tango 2i\sqrt{47} mai i -46.
x=\frac{-\sqrt{47}i-23}{24}
Whakawehe -46-2i\sqrt{47} ki te 48.
x=\frac{-23+\sqrt{47}i}{24} x=\frac{-\sqrt{47}i-23}{24}
Kua oti te whārite te whakatau.
24x^{2}+46x+24=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
24x^{2}+46x+24-24=-24
Me tango 24 mai i ngā taha e rua o te whārite.
24x^{2}+46x=-24
Mā te tango i te 24 i a ia ake anō ka toe ko te 0.
\frac{24x^{2}+46x}{24}=-\frac{24}{24}
Whakawehea ngā taha e rua ki te 24.
x^{2}+\frac{46}{24}x=-\frac{24}{24}
Mā te whakawehe ki te 24 ka wetekia te whakareanga ki te 24.
x^{2}+\frac{23}{12}x=-\frac{24}{24}
Whakahekea te hautanga \frac{46}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{23}{12}x=-1
Whakawehe -24 ki te 24.
x^{2}+\frac{23}{12}x+\left(\frac{23}{24}\right)^{2}=-1+\left(\frac{23}{24}\right)^{2}
Whakawehea te \frac{23}{12}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{23}{24}. Nā, tāpiria te pūrua o te \frac{23}{24} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{23}{12}x+\frac{529}{576}=-1+\frac{529}{576}
Pūruatia \frac{23}{24} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{23}{12}x+\frac{529}{576}=-\frac{47}{576}
Tāpiri -1 ki te \frac{529}{576}.
\left(x+\frac{23}{24}\right)^{2}=-\frac{47}{576}
Tauwehea x^{2}+\frac{23}{12}x+\frac{529}{576}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{24}\right)^{2}}=\sqrt{-\frac{47}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{23}{24}=\frac{\sqrt{47}i}{24} x+\frac{23}{24}=-\frac{\sqrt{47}i}{24}
Whakarūnātia.
x=\frac{-23+\sqrt{47}i}{24} x=\frac{-\sqrt{47}i-23}{24}
Me tango \frac{23}{24} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}