Whakaoti mō k
k = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
k=-\frac{3}{4}=-0.75
Tohaina
Kua tāruatia ki te papatopenga
12k^{2}+25k+12=0
Whakawehea ngā taha e rua ki te 2.
a+b=25 ab=12\times 12=144
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 12k^{2}+ak+bk+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,144 2,72 3,48 4,36 6,24 8,18 9,16 12,12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 144.
1+144=145 2+72=74 3+48=51 4+36=40 6+24=30 8+18=26 9+16=25 12+12=24
Tātaihia te tapeke mō ia takirua.
a=9 b=16
Ko te otinga te takirua ka hoatu i te tapeke 25.
\left(12k^{2}+9k\right)+\left(16k+12\right)
Tuhia anō te 12k^{2}+25k+12 hei \left(12k^{2}+9k\right)+\left(16k+12\right).
3k\left(4k+3\right)+4\left(4k+3\right)
Tauwehea te 3k i te tuatahi me te 4 i te rōpū tuarua.
\left(4k+3\right)\left(3k+4\right)
Whakatauwehea atu te kīanga pātahi 4k+3 mā te whakamahi i te āhuatanga tātai tohatoha.
k=-\frac{3}{4} k=-\frac{4}{3}
Hei kimi otinga whārite, me whakaoti te 4k+3=0 me te 3k+4=0.
24k^{2}+50k+24=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-50±\sqrt{50^{2}-4\times 24\times 24}}{2\times 24}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 24 mō a, 50 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-50±\sqrt{2500-4\times 24\times 24}}{2\times 24}
Pūrua 50.
k=\frac{-50±\sqrt{2500-96\times 24}}{2\times 24}
Whakareatia -4 ki te 24.
k=\frac{-50±\sqrt{2500-2304}}{2\times 24}
Whakareatia -96 ki te 24.
k=\frac{-50±\sqrt{196}}{2\times 24}
Tāpiri 2500 ki te -2304.
k=\frac{-50±14}{2\times 24}
Tuhia te pūtakerua o te 196.
k=\frac{-50±14}{48}
Whakareatia 2 ki te 24.
k=-\frac{36}{48}
Nā, me whakaoti te whārite k=\frac{-50±14}{48} ina he tāpiri te ±. Tāpiri -50 ki te 14.
k=-\frac{3}{4}
Whakahekea te hautanga \frac{-36}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
k=-\frac{64}{48}
Nā, me whakaoti te whārite k=\frac{-50±14}{48} ina he tango te ±. Tango 14 mai i -50.
k=-\frac{4}{3}
Whakahekea te hautanga \frac{-64}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
k=-\frac{3}{4} k=-\frac{4}{3}
Kua oti te whārite te whakatau.
24k^{2}+50k+24=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
24k^{2}+50k+24-24=-24
Me tango 24 mai i ngā taha e rua o te whārite.
24k^{2}+50k=-24
Mā te tango i te 24 i a ia ake anō ka toe ko te 0.
\frac{24k^{2}+50k}{24}=-\frac{24}{24}
Whakawehea ngā taha e rua ki te 24.
k^{2}+\frac{50}{24}k=-\frac{24}{24}
Mā te whakawehe ki te 24 ka wetekia te whakareanga ki te 24.
k^{2}+\frac{25}{12}k=-\frac{24}{24}
Whakahekea te hautanga \frac{50}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
k^{2}+\frac{25}{12}k=-1
Whakawehe -24 ki te 24.
k^{2}+\frac{25}{12}k+\left(\frac{25}{24}\right)^{2}=-1+\left(\frac{25}{24}\right)^{2}
Whakawehea te \frac{25}{12}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{25}{24}. Nā, tāpiria te pūrua o te \frac{25}{24} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
k^{2}+\frac{25}{12}k+\frac{625}{576}=-1+\frac{625}{576}
Pūruatia \frac{25}{24} mā te pūrua i te taurunga me te tauraro o te hautanga.
k^{2}+\frac{25}{12}k+\frac{625}{576}=\frac{49}{576}
Tāpiri -1 ki te \frac{625}{576}.
\left(k+\frac{25}{24}\right)^{2}=\frac{49}{576}
Tauwehea k^{2}+\frac{25}{12}k+\frac{625}{576}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{25}{24}\right)^{2}}=\sqrt{\frac{49}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
k+\frac{25}{24}=\frac{7}{24} k+\frac{25}{24}=-\frac{7}{24}
Whakarūnātia.
k=-\frac{3}{4} k=-\frac{4}{3}
Me tango \frac{25}{24} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}