24 \times ( 1 + 25 \% ) =
Aromātai
30
Tauwehe
2\times 3\times 5
Tohaina
Kua tāruatia ki te papatopenga
24\left(1+\frac{1}{4}\right)
Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
24\left(\frac{4}{4}+\frac{1}{4}\right)
Me tahuri te 1 ki te hautau \frac{4}{4}.
24\times \frac{4+1}{4}
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
24\times \frac{5}{4}
Tāpirihia te 4 ki te 1, ka 5.
\frac{24\times 5}{4}
Tuhia te 24\times \frac{5}{4} hei hautanga kotahi.
\frac{120}{4}
Whakareatia te 24 ki te 5, ka 120.
30
Whakawehea te 120 ki te 4, kia riro ko 30.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}