Whakaoti mō x
x = -\frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx -1.042427968
x = \frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx 1.042427968
x=\frac{\sqrt{81-3\sqrt{633}}}{12}\approx 0.195816067
x=-\frac{\sqrt{81-3\sqrt{633}}}{12}\approx -0.195816067
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
24 \cdot x ^ { 2 } + \frac { 1 } { x ^ { 2 } } = 27
Tohaina
Kua tāruatia ki te papatopenga
24x^{2}x^{2}+1=27x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{2}.
24x^{4}+1=27x^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
24x^{4}+1-27x^{2}=0
Tangohia te 27x^{2} mai i ngā taha e rua.
24t^{2}-27t+1=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 24\times 1}}{2\times 24}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 24 mō te a, te -27 mō te b, me te 1 mō te c i te ture pūrua.
t=\frac{27±\sqrt{633}}{48}
Mahia ngā tātaitai.
t=\frac{\sqrt{633}}{48}+\frac{9}{16} t=-\frac{\sqrt{633}}{48}+\frac{9}{16}
Whakaotia te whārite t=\frac{27±\sqrt{633}}{48} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}