Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

24x^{2}x^{2}+1=27x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{2}.
24x^{4}+1=27x^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
24x^{4}+1-27x^{2}=0
Tangohia te 27x^{2} mai i ngā taha e rua.
24t^{2}-27t+1=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 24\times 1}}{2\times 24}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 24 mō te a, te -27 mō te b, me te 1 mō te c i te ture pūrua.
t=\frac{27±\sqrt{633}}{48}
Mahia ngā tātaitai.
t=\frac{\sqrt{633}}{48}+\frac{9}{16} t=-\frac{\sqrt{633}}{48}+\frac{9}{16}
Whakaotia te whārite t=\frac{27±\sqrt{633}}{48} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.