Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3^{n-1}=239
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(3^{n-1})=\log(239)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(n-1\right)\log(3)=\log(239)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
n-1=\frac{\log(239)}{\log(3)}
Whakawehea ngā taha e rua ki te \log(3).
n-1=\log_{3}\left(239\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=\log_{3}\left(239\right)-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.