Whakaoti mō x
x=\frac{418}{1191}\approx 0.350965575
Graph
Tohaina
Kua tāruatia ki te papatopenga
1+x=\frac{32.18}{23.82}
Whakawehea ngā taha e rua ki te 23.82.
1+x=\frac{3218}{2382}
Whakarohaina te \frac{32.18}{23.82} mā te whakarea i te taurunga me te tauraro ki te 100.
1+x=\frac{1609}{1191}
Whakahekea te hautanga \frac{3218}{2382} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{1609}{1191}-1
Tangohia te 1 mai i ngā taha e rua.
x=\frac{1609}{1191}-\frac{1191}{1191}
Me tahuri te 1 ki te hautau \frac{1191}{1191}.
x=\frac{1609-1191}{1191}
Tā te mea he rite te tauraro o \frac{1609}{1191} me \frac{1191}{1191}, me tango rāua mā te tango i ō raua taurunga.
x=\frac{418}{1191}
Tangohia te 1191 i te 1609, ka 418.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}