Whakaoti mō x
x=\frac{\sqrt{15142}}{98}+\frac{123}{49}\approx 3.765845247
x=-\frac{\sqrt{15142}}{98}+\frac{123}{49}\approx 1.254562917
Graph
Tohaina
Kua tāruatia ki te papatopenga
23.15=24.6x-4.9x^{2}
Whakareatia te 0.5 ki te 9.8, ka 4.9.
24.6x-4.9x^{2}=23.15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
24.6x-4.9x^{2}-23.15=0
Tangohia te 23.15 mai i ngā taha e rua.
-4.9x^{2}+24.6x-23.15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-24.6±\sqrt{24.6^{2}-4\left(-4.9\right)\left(-23.15\right)}}{2\left(-4.9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4.9 mō a, 24.6 mō b, me -23.15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24.6±\sqrt{605.16-4\left(-4.9\right)\left(-23.15\right)}}{2\left(-4.9\right)}
Pūruatia 24.6 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-24.6±\sqrt{605.16+19.6\left(-23.15\right)}}{2\left(-4.9\right)}
Whakareatia -4 ki te -4.9.
x=\frac{-24.6±\sqrt{605.16-453.74}}{2\left(-4.9\right)}
Whakareatia 19.6 ki te -23.15 mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-24.6±\sqrt{151.42}}{2\left(-4.9\right)}
Tāpiri 605.16 ki te -453.74 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-24.6±\frac{\sqrt{15142}}{10}}{2\left(-4.9\right)}
Tuhia te pūtakerua o te 151.42.
x=\frac{-24.6±\frac{\sqrt{15142}}{10}}{-9.8}
Whakareatia 2 ki te -4.9.
x=\frac{\frac{\sqrt{15142}}{10}-\frac{123}{5}}{-9.8}
Nā, me whakaoti te whārite x=\frac{-24.6±\frac{\sqrt{15142}}{10}}{-9.8} ina he tāpiri te ±. Tāpiri -24.6 ki te \frac{\sqrt{15142}}{10}.
x=-\frac{\sqrt{15142}}{98}+\frac{123}{49}
Whakawehe -\frac{123}{5}+\frac{\sqrt{15142}}{10} ki te -9.8 mā te whakarea -\frac{123}{5}+\frac{\sqrt{15142}}{10} ki te tau huripoki o -9.8.
x=\frac{-\frac{\sqrt{15142}}{10}-\frac{123}{5}}{-9.8}
Nā, me whakaoti te whārite x=\frac{-24.6±\frac{\sqrt{15142}}{10}}{-9.8} ina he tango te ±. Tango \frac{\sqrt{15142}}{10} mai i -24.6.
x=\frac{\sqrt{15142}}{98}+\frac{123}{49}
Whakawehe -\frac{123}{5}-\frac{\sqrt{15142}}{10} ki te -9.8 mā te whakarea -\frac{123}{5}-\frac{\sqrt{15142}}{10} ki te tau huripoki o -9.8.
x=-\frac{\sqrt{15142}}{98}+\frac{123}{49} x=\frac{\sqrt{15142}}{98}+\frac{123}{49}
Kua oti te whārite te whakatau.
23.15=24.6x-4.9x^{2}
Whakareatia te 0.5 ki te 9.8, ka 4.9.
24.6x-4.9x^{2}=23.15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-4.9x^{2}+24.6x=23.15
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4.9x^{2}+24.6x}{-4.9}=\frac{23.15}{-4.9}
Whakawehea ngā taha e rua o te whārite ki te -4.9, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{24.6}{-4.9}x=\frac{23.15}{-4.9}
Mā te whakawehe ki te -4.9 ka wetekia te whakareanga ki te -4.9.
x^{2}-\frac{246}{49}x=\frac{23.15}{-4.9}
Whakawehe 24.6 ki te -4.9 mā te whakarea 24.6 ki te tau huripoki o -4.9.
x^{2}-\frac{246}{49}x=-\frac{463}{98}
Whakawehe 23.15 ki te -4.9 mā te whakarea 23.15 ki te tau huripoki o -4.9.
x^{2}-\frac{246}{49}x+\left(-\frac{123}{49}\right)^{2}=-\frac{463}{98}+\left(-\frac{123}{49}\right)^{2}
Whakawehea te -\frac{246}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{123}{49}. Nā, tāpiria te pūrua o te -\frac{123}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{246}{49}x+\frac{15129}{2401}=-\frac{463}{98}+\frac{15129}{2401}
Pūruatia -\frac{123}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{246}{49}x+\frac{15129}{2401}=\frac{7571}{4802}
Tāpiri -\frac{463}{98} ki te \frac{15129}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{123}{49}\right)^{2}=\frac{7571}{4802}
Tauwehea x^{2}-\frac{246}{49}x+\frac{15129}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{123}{49}\right)^{2}}=\sqrt{\frac{7571}{4802}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{123}{49}=\frac{\sqrt{15142}}{98} x-\frac{123}{49}=-\frac{\sqrt{15142}}{98}
Whakarūnātia.
x=\frac{\sqrt{15142}}{98}+\frac{123}{49} x=-\frac{\sqrt{15142}}{98}+\frac{123}{49}
Me tāpiri \frac{123}{49} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}