Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

23x^{2}+5x+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\times 23\times 3}}{2\times 23}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 23 mō a, 5 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 23\times 3}}{2\times 23}
Pūrua 5.
x=\frac{-5±\sqrt{25-92\times 3}}{2\times 23}
Whakareatia -4 ki te 23.
x=\frac{-5±\sqrt{25-276}}{2\times 23}
Whakareatia -92 ki te 3.
x=\frac{-5±\sqrt{-251}}{2\times 23}
Tāpiri 25 ki te -276.
x=\frac{-5±\sqrt{251}i}{2\times 23}
Tuhia te pūtakerua o te -251.
x=\frac{-5±\sqrt{251}i}{46}
Whakareatia 2 ki te 23.
x=\frac{-5+\sqrt{251}i}{46}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{251}i}{46} ina he tāpiri te ±. Tāpiri -5 ki te i\sqrt{251}.
x=\frac{-\sqrt{251}i-5}{46}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{251}i}{46} ina he tango te ±. Tango i\sqrt{251} mai i -5.
x=\frac{-5+\sqrt{251}i}{46} x=\frac{-\sqrt{251}i-5}{46}
Kua oti te whārite te whakatau.
23x^{2}+5x+3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
23x^{2}+5x+3-3=-3
Me tango 3 mai i ngā taha e rua o te whārite.
23x^{2}+5x=-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
\frac{23x^{2}+5x}{23}=-\frac{3}{23}
Whakawehea ngā taha e rua ki te 23.
x^{2}+\frac{5}{23}x=-\frac{3}{23}
Mā te whakawehe ki te 23 ka wetekia te whakareanga ki te 23.
x^{2}+\frac{5}{23}x+\left(\frac{5}{46}\right)^{2}=-\frac{3}{23}+\left(\frac{5}{46}\right)^{2}
Whakawehea te \frac{5}{23}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{46}. Nā, tāpiria te pūrua o te \frac{5}{46} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{23}x+\frac{25}{2116}=-\frac{3}{23}+\frac{25}{2116}
Pūruatia \frac{5}{46} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{23}x+\frac{25}{2116}=-\frac{251}{2116}
Tāpiri -\frac{3}{23} ki te \frac{25}{2116} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{46}\right)^{2}=-\frac{251}{2116}
Tauwehea x^{2}+\frac{5}{23}x+\frac{25}{2116}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{46}\right)^{2}}=\sqrt{-\frac{251}{2116}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{46}=\frac{\sqrt{251}i}{46} x+\frac{5}{46}=-\frac{\sqrt{251}i}{46}
Whakarūnātia.
x=\frac{-5+\sqrt{251}i}{46} x=\frac{-\sqrt{251}i-5}{46}
Me tango \frac{5}{46} mai i ngā taha e rua o te whārite.