Tīpoka ki ngā ihirangi matua
Whakaoti mō h
Tick mark Image
Whakaoti mō h (complex solution)
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{23}{40}=e^{-0.2h}
Whakawehea ngā taha e rua ki te 40.
e^{-0.2h}=\frac{23}{40}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(e^{-0.2h})=\log(\frac{23}{40})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
-0.2h\log(e)=\log(\frac{23}{40})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
-0.2h=\frac{\log(\frac{23}{40})}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
-0.2h=\log_{e}\left(\frac{23}{40}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
h=\frac{\ln(\frac{23}{40})}{-0.2}
Me whakarea ngā taha e rua ki te -5.