Whakaoti mō h
h=3
Tohaina
Kua tāruatia ki te papatopenga
22-2h-4-3\left(h-1\right)=h+3
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te h+2.
18-2h-3\left(h-1\right)=h+3
Tangohia te 4 i te 22, ka 18.
18-2h-3h+3=h+3
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te h-1.
18-5h+3=h+3
Pahekotia te -2h me -3h, ka -5h.
21-5h=h+3
Tāpirihia te 18 ki te 3, ka 21.
21-5h-h=3
Tangohia te h mai i ngā taha e rua.
21-6h=3
Pahekotia te -5h me -h, ka -6h.
-6h=3-21
Tangohia te 21 mai i ngā taha e rua.
-6h=-18
Tangohia te 21 i te 3, ka -18.
h=\frac{-18}{-6}
Whakawehea ngā taha e rua ki te -6.
h=3
Whakawehea te -18 ki te -6, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}