Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\frac{1}{22}
Whakawehea ngā taha e rua ki te 22.
x=\frac{\sqrt{22}}{22} x=-\frac{\sqrt{22}}{22}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=\frac{1}{22}
Whakawehea ngā taha e rua ki te 22.
x^{2}-\frac{1}{22}=0
Tangohia te \frac{1}{22} mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{22}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{1}{22} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1}{22}\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{\frac{2}{11}}}{2}
Whakareatia -4 ki te -\frac{1}{22}.
x=\frac{0±\frac{\sqrt{22}}{11}}{2}
Tuhia te pūtakerua o te \frac{2}{11}.
x=\frac{\sqrt{22}}{22}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{22}}{11}}{2} ina he tāpiri te ±.
x=-\frac{\sqrt{22}}{22}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{22}}{11}}{2} ina he tango te ±.
x=\frac{\sqrt{22}}{22} x=-\frac{\sqrt{22}}{22}
Kua oti te whārite te whakatau.