Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

110=4\times 9t^{2}
Whakareatia te 22 ki te 5, ka 110.
110=36t^{2}
Whakareatia te 4 ki te 9, ka 36.
36t^{2}=110
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t^{2}=\frac{110}{36}
Whakawehea ngā taha e rua ki te 36.
t^{2}=\frac{55}{18}
Whakahekea te hautanga \frac{110}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t=\frac{\sqrt{110}}{6} t=-\frac{\sqrt{110}}{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
110=4\times 9t^{2}
Whakareatia te 22 ki te 5, ka 110.
110=36t^{2}
Whakareatia te 4 ki te 9, ka 36.
36t^{2}=110
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
36t^{2}-110=0
Tangohia te 110 mai i ngā taha e rua.
t=\frac{0±\sqrt{0^{2}-4\times 36\left(-110\right)}}{2\times 36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 36 mō a, 0 mō b, me -110 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 36\left(-110\right)}}{2\times 36}
Pūrua 0.
t=\frac{0±\sqrt{-144\left(-110\right)}}{2\times 36}
Whakareatia -4 ki te 36.
t=\frac{0±\sqrt{15840}}{2\times 36}
Whakareatia -144 ki te -110.
t=\frac{0±12\sqrt{110}}{2\times 36}
Tuhia te pūtakerua o te 15840.
t=\frac{0±12\sqrt{110}}{72}
Whakareatia 2 ki te 36.
t=\frac{\sqrt{110}}{6}
Nā, me whakaoti te whārite t=\frac{0±12\sqrt{110}}{72} ina he tāpiri te ±.
t=-\frac{\sqrt{110}}{6}
Nā, me whakaoti te whārite t=\frac{0±12\sqrt{110}}{72} ina he tango te ±.
t=\frac{\sqrt{110}}{6} t=-\frac{\sqrt{110}}{6}
Kua oti te whārite te whakatau.