Whakaoti mō t
t = \frac{\sqrt{110}}{6} \approx 1.748014747
t = -\frac{\sqrt{110}}{6} \approx -1.748014747
Tohaina
Kua tāruatia ki te papatopenga
110=4\times 9t^{2}
Whakareatia te 22 ki te 5, ka 110.
110=36t^{2}
Whakareatia te 4 ki te 9, ka 36.
36t^{2}=110
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t^{2}=\frac{110}{36}
Whakawehea ngā taha e rua ki te 36.
t^{2}=\frac{55}{18}
Whakahekea te hautanga \frac{110}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t=\frac{\sqrt{110}}{6} t=-\frac{\sqrt{110}}{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
110=4\times 9t^{2}
Whakareatia te 22 ki te 5, ka 110.
110=36t^{2}
Whakareatia te 4 ki te 9, ka 36.
36t^{2}=110
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
36t^{2}-110=0
Tangohia te 110 mai i ngā taha e rua.
t=\frac{0±\sqrt{0^{2}-4\times 36\left(-110\right)}}{2\times 36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 36 mō a, 0 mō b, me -110 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 36\left(-110\right)}}{2\times 36}
Pūrua 0.
t=\frac{0±\sqrt{-144\left(-110\right)}}{2\times 36}
Whakareatia -4 ki te 36.
t=\frac{0±\sqrt{15840}}{2\times 36}
Whakareatia -144 ki te -110.
t=\frac{0±12\sqrt{110}}{2\times 36}
Tuhia te pūtakerua o te 15840.
t=\frac{0±12\sqrt{110}}{72}
Whakareatia 2 ki te 36.
t=\frac{\sqrt{110}}{6}
Nā, me whakaoti te whārite t=\frac{0±12\sqrt{110}}{72} ina he tāpiri te ±.
t=-\frac{\sqrt{110}}{6}
Nā, me whakaoti te whārite t=\frac{0±12\sqrt{110}}{72} ina he tango te ±.
t=\frac{\sqrt{110}}{6} t=-\frac{\sqrt{110}}{6}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}