Whakaoti mō x (complex solution)
x=\frac{2\sqrt{210}i}{219}+\frac{2}{73}\approx 0.02739726+0.13234134i
x=-\frac{2\sqrt{210}i}{219}+\frac{2}{73}\approx 0.02739726-0.13234134i
Graph
Tohaina
Kua tāruatia ki te papatopenga
219x^{2}-12x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 219\times 4}}{2\times 219}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 219 mō a, -12 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 219\times 4}}{2\times 219}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-876\times 4}}{2\times 219}
Whakareatia -4 ki te 219.
x=\frac{-\left(-12\right)±\sqrt{144-3504}}{2\times 219}
Whakareatia -876 ki te 4.
x=\frac{-\left(-12\right)±\sqrt{-3360}}{2\times 219}
Tāpiri 144 ki te -3504.
x=\frac{-\left(-12\right)±4\sqrt{210}i}{2\times 219}
Tuhia te pūtakerua o te -3360.
x=\frac{12±4\sqrt{210}i}{2\times 219}
Ko te tauaro o -12 ko 12.
x=\frac{12±4\sqrt{210}i}{438}
Whakareatia 2 ki te 219.
x=\frac{12+4\sqrt{210}i}{438}
Nā, me whakaoti te whārite x=\frac{12±4\sqrt{210}i}{438} ina he tāpiri te ±. Tāpiri 12 ki te 4i\sqrt{210}.
x=\frac{2\sqrt{210}i}{219}+\frac{2}{73}
Whakawehe 12+4i\sqrt{210} ki te 438.
x=\frac{-4\sqrt{210}i+12}{438}
Nā, me whakaoti te whārite x=\frac{12±4\sqrt{210}i}{438} ina he tango te ±. Tango 4i\sqrt{210} mai i 12.
x=-\frac{2\sqrt{210}i}{219}+\frac{2}{73}
Whakawehe 12-4i\sqrt{210} ki te 438.
x=\frac{2\sqrt{210}i}{219}+\frac{2}{73} x=-\frac{2\sqrt{210}i}{219}+\frac{2}{73}
Kua oti te whārite te whakatau.
219x^{2}-12x+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
219x^{2}-12x+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
219x^{2}-12x=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{219x^{2}-12x}{219}=-\frac{4}{219}
Whakawehea ngā taha e rua ki te 219.
x^{2}+\left(-\frac{12}{219}\right)x=-\frac{4}{219}
Mā te whakawehe ki te 219 ka wetekia te whakareanga ki te 219.
x^{2}-\frac{4}{73}x=-\frac{4}{219}
Whakahekea te hautanga \frac{-12}{219} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{4}{73}x+\left(-\frac{2}{73}\right)^{2}=-\frac{4}{219}+\left(-\frac{2}{73}\right)^{2}
Whakawehea te -\frac{4}{73}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{73}. Nā, tāpiria te pūrua o te -\frac{2}{73} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{73}x+\frac{4}{5329}=-\frac{4}{219}+\frac{4}{5329}
Pūruatia -\frac{2}{73} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{4}{73}x+\frac{4}{5329}=-\frac{280}{15987}
Tāpiri -\frac{4}{219} ki te \frac{4}{5329} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{2}{73}\right)^{2}=-\frac{280}{15987}
Tauwehea x^{2}-\frac{4}{73}x+\frac{4}{5329}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{73}\right)^{2}}=\sqrt{-\frac{280}{15987}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{73}=\frac{2\sqrt{210}i}{219} x-\frac{2}{73}=-\frac{2\sqrt{210}i}{219}
Whakarūnātia.
x=\frac{2\sqrt{210}i}{219}+\frac{2}{73} x=-\frac{2\sqrt{210}i}{219}+\frac{2}{73}
Me tāpiri \frac{2}{73} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}