Whakaoti mō x
x=-\frac{601y}{211}+\frac{1}{844}
Whakaoti mō y
y=-\frac{211x}{601}+\frac{1}{2404}
Graph
Tohaina
Kua tāruatia ki te papatopenga
211x=\frac{1}{4}-601y
Tangohia te 601y mai i ngā taha e rua.
\frac{211x}{211}=\frac{\frac{1}{4}-601y}{211}
Whakawehea ngā taha e rua ki te 211.
x=\frac{\frac{1}{4}-601y}{211}
Mā te whakawehe ki te 211 ka wetekia te whakareanga ki te 211.
x=-\frac{601y}{211}+\frac{1}{844}
Whakawehe \frac{1}{4}-601y ki te 211.
601y=\frac{1}{4}-211x
Tangohia te 211x mai i ngā taha e rua.
\frac{601y}{601}=\frac{\frac{1}{4}-211x}{601}
Whakawehea ngā taha e rua ki te 601.
y=\frac{\frac{1}{4}-211x}{601}
Mā te whakawehe ki te 601 ka wetekia te whakareanga ki te 601.
y=-\frac{211x}{601}+\frac{1}{2404}
Whakawehe \frac{1}{4}-211x ki te 601.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}