Whakaoti mō p
p=22+6\sqrt{6}i\approx 22+14.696938457i
p=-6\sqrt{6}i+22\approx 22-14.696938457i
Tohaina
Kua tāruatia ki te papatopenga
-3p^{2}+132p=2100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-3p^{2}+132p-2100=0
Tangohia te 2100 mai i ngā taha e rua.
p=\frac{-132±\sqrt{132^{2}-4\left(-3\right)\left(-2100\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 132 mō b, me -2100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-132±\sqrt{17424-4\left(-3\right)\left(-2100\right)}}{2\left(-3\right)}
Pūrua 132.
p=\frac{-132±\sqrt{17424+12\left(-2100\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
p=\frac{-132±\sqrt{17424-25200}}{2\left(-3\right)}
Whakareatia 12 ki te -2100.
p=\frac{-132±\sqrt{-7776}}{2\left(-3\right)}
Tāpiri 17424 ki te -25200.
p=\frac{-132±36\sqrt{6}i}{2\left(-3\right)}
Tuhia te pūtakerua o te -7776.
p=\frac{-132±36\sqrt{6}i}{-6}
Whakareatia 2 ki te -3.
p=\frac{-132+36\sqrt{6}i}{-6}
Nā, me whakaoti te whārite p=\frac{-132±36\sqrt{6}i}{-6} ina he tāpiri te ±. Tāpiri -132 ki te 36i\sqrt{6}.
p=-6\sqrt{6}i+22
Whakawehe -132+36i\sqrt{6} ki te -6.
p=\frac{-36\sqrt{6}i-132}{-6}
Nā, me whakaoti te whārite p=\frac{-132±36\sqrt{6}i}{-6} ina he tango te ±. Tango 36i\sqrt{6} mai i -132.
p=22+6\sqrt{6}i
Whakawehe -132-36i\sqrt{6} ki te -6.
p=-6\sqrt{6}i+22 p=22+6\sqrt{6}i
Kua oti te whārite te whakatau.
-3p^{2}+132p=2100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{-3p^{2}+132p}{-3}=\frac{2100}{-3}
Whakawehea ngā taha e rua ki te -3.
p^{2}+\frac{132}{-3}p=\frac{2100}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
p^{2}-44p=\frac{2100}{-3}
Whakawehe 132 ki te -3.
p^{2}-44p=-700
Whakawehe 2100 ki te -3.
p^{2}-44p+\left(-22\right)^{2}=-700+\left(-22\right)^{2}
Whakawehea te -44, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -22. Nā, tāpiria te pūrua o te -22 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-44p+484=-700+484
Pūrua -22.
p^{2}-44p+484=-216
Tāpiri -700 ki te 484.
\left(p-22\right)^{2}=-216
Tauwehea p^{2}-44p+484. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-22\right)^{2}}=\sqrt{-216}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-22=6\sqrt{6}i p-22=-6\sqrt{6}i
Whakarūnātia.
p=22+6\sqrt{6}i p=-6\sqrt{6}i+22
Me tāpiri 22 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}