Aromātai
\frac{71604}{1435}\approx 49.89825784
Tauwehe
\frac{13 \cdot 17 \cdot 2 ^ {2} \cdot 3 ^ {4}}{5 \cdot 7 \cdot 41} = 49\frac{1289}{1435} = 49.89825783972125
Tohaina
Kua tāruatia ki te papatopenga
\frac{21.6}{63.5+80}\left(188+108+35.5\right)
Tāpirihia te 28 ki te 35.5, ka 63.5.
\frac{21.6}{143.5}\left(188+108+35.5\right)
Tāpirihia te 63.5 ki te 80, ka 143.5.
\frac{216}{1435}\left(188+108+35.5\right)
Whakarohaina te \frac{21.6}{143.5} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{216}{1435}\left(296+35.5\right)
Tāpirihia te 188 ki te 108, ka 296.
\frac{216}{1435}\times 331.5
Tāpirihia te 296 ki te 35.5, ka 331.5.
\frac{216}{1435}\times \frac{663}{2}
Me tahuri ki tau ā-ira 331.5 ki te hautau \frac{3315}{10}. Whakahekea te hautanga \frac{3315}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{216\times 663}{1435\times 2}
Me whakarea te \frac{216}{1435} ki te \frac{663}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{143208}{2870}
Mahia ngā whakarea i roto i te hautanga \frac{216\times 663}{1435\times 2}.
\frac{71604}{1435}
Whakahekea te hautanga \frac{143208}{2870} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}