Tauwehe
\left(3x+4\right)\left(7x+3\right)
Aromātai
\left(3x+4\right)\left(7x+3\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=37 ab=21\times 12=252
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 21x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,252 2,126 3,84 4,63 6,42 7,36 9,28 12,21 14,18
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 252.
1+252=253 2+126=128 3+84=87 4+63=67 6+42=48 7+36=43 9+28=37 12+21=33 14+18=32
Tātaihia te tapeke mō ia takirua.
a=9 b=28
Ko te otinga te takirua ka hoatu i te tapeke 37.
\left(21x^{2}+9x\right)+\left(28x+12\right)
Tuhia anō te 21x^{2}+37x+12 hei \left(21x^{2}+9x\right)+\left(28x+12\right).
3x\left(7x+3\right)+4\left(7x+3\right)
Tauwehea te 3x i te tuatahi me te 4 i te rōpū tuarua.
\left(7x+3\right)\left(3x+4\right)
Whakatauwehea atu te kīanga pātahi 7x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
21x^{2}+37x+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-37±\sqrt{37^{2}-4\times 21\times 12}}{2\times 21}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-37±\sqrt{1369-4\times 21\times 12}}{2\times 21}
Pūrua 37.
x=\frac{-37±\sqrt{1369-84\times 12}}{2\times 21}
Whakareatia -4 ki te 21.
x=\frac{-37±\sqrt{1369-1008}}{2\times 21}
Whakareatia -84 ki te 12.
x=\frac{-37±\sqrt{361}}{2\times 21}
Tāpiri 1369 ki te -1008.
x=\frac{-37±19}{2\times 21}
Tuhia te pūtakerua o te 361.
x=\frac{-37±19}{42}
Whakareatia 2 ki te 21.
x=-\frac{18}{42}
Nā, me whakaoti te whārite x=\frac{-37±19}{42} ina he tāpiri te ±. Tāpiri -37 ki te 19.
x=-\frac{3}{7}
Whakahekea te hautanga \frac{-18}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{56}{42}
Nā, me whakaoti te whārite x=\frac{-37±19}{42} ina he tango te ±. Tango 19 mai i -37.
x=-\frac{4}{3}
Whakahekea te hautanga \frac{-56}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
21x^{2}+37x+12=21\left(x-\left(-\frac{3}{7}\right)\right)\left(x-\left(-\frac{4}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{3}{7} mō te x_{1} me te -\frac{4}{3} mō te x_{2}.
21x^{2}+37x+12=21\left(x+\frac{3}{7}\right)\left(x+\frac{4}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
21x^{2}+37x+12=21\times \frac{7x+3}{7}\left(x+\frac{4}{3}\right)
Tāpiri \frac{3}{7} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
21x^{2}+37x+12=21\times \frac{7x+3}{7}\times \frac{3x+4}{3}
Tāpiri \frac{4}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
21x^{2}+37x+12=21\times \frac{\left(7x+3\right)\left(3x+4\right)}{7\times 3}
Whakareatia \frac{7x+3}{7} ki te \frac{3x+4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
21x^{2}+37x+12=21\times \frac{\left(7x+3\right)\left(3x+4\right)}{21}
Whakareatia 7 ki te 3.
21x^{2}+37x+12=\left(7x+3\right)\left(3x+4\right)
Whakakorea atu te tauwehe pūnoa nui rawa 21 i roto i te 21 me te 21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}