Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=10 ab=21\left(-16\right)=-336
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 21x^{2}+ax+bx-16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,336 -2,168 -3,112 -4,84 -6,56 -7,48 -8,42 -12,28 -14,24 -16,21
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -336.
-1+336=335 -2+168=166 -3+112=109 -4+84=80 -6+56=50 -7+48=41 -8+42=34 -12+28=16 -14+24=10 -16+21=5
Tātaihia te tapeke mō ia takirua.
a=-14 b=24
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(21x^{2}-14x\right)+\left(24x-16\right)
Tuhia anō te 21x^{2}+10x-16 hei \left(21x^{2}-14x\right)+\left(24x-16\right).
7x\left(3x-2\right)+8\left(3x-2\right)
Tauwehea te 7x i te tuatahi me te 8 i te rōpū tuarua.
\left(3x-2\right)\left(7x+8\right)
Whakatauwehea atu te kīanga pātahi 3x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
21x^{2}+10x-16=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 21\left(-16\right)}}{2\times 21}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{100-4\times 21\left(-16\right)}}{2\times 21}
Pūrua 10.
x=\frac{-10±\sqrt{100-84\left(-16\right)}}{2\times 21}
Whakareatia -4 ki te 21.
x=\frac{-10±\sqrt{100+1344}}{2\times 21}
Whakareatia -84 ki te -16.
x=\frac{-10±\sqrt{1444}}{2\times 21}
Tāpiri 100 ki te 1344.
x=\frac{-10±38}{2\times 21}
Tuhia te pūtakerua o te 1444.
x=\frac{-10±38}{42}
Whakareatia 2 ki te 21.
x=\frac{28}{42}
Nā, me whakaoti te whārite x=\frac{-10±38}{42} ina he tāpiri te ±. Tāpiri -10 ki te 38.
x=\frac{2}{3}
Whakahekea te hautanga \frac{28}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
x=-\frac{48}{42}
Nā, me whakaoti te whārite x=\frac{-10±38}{42} ina he tango te ±. Tango 38 mai i -10.
x=-\frac{8}{7}
Whakahekea te hautanga \frac{-48}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
21x^{2}+10x-16=21\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{8}{7}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{2}{3} mō te x_{1} me te -\frac{8}{7} mō te x_{2}.
21x^{2}+10x-16=21\left(x-\frac{2}{3}\right)\left(x+\frac{8}{7}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
21x^{2}+10x-16=21\times \frac{3x-2}{3}\left(x+\frac{8}{7}\right)
Tango \frac{2}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
21x^{2}+10x-16=21\times \frac{3x-2}{3}\times \frac{7x+8}{7}
Tāpiri \frac{8}{7} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
21x^{2}+10x-16=21\times \frac{\left(3x-2\right)\left(7x+8\right)}{3\times 7}
Whakareatia \frac{3x-2}{3} ki te \frac{7x+8}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
21x^{2}+10x-16=21\times \frac{\left(3x-2\right)\left(7x+8\right)}{21}
Whakareatia 3 ki te 7.
21x^{2}+10x-16=\left(3x-2\right)\left(7x+8\right)
Whakakorea atu te tauwehe pūnoa nui rawa 21 i roto i te 21 me te 21.