Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(7w^{2}+21w+5w+15\right)
Tauwehea te 3.
7w^{2}+26w+15
Whakaarohia te 7w^{2}+21w+5w+15. Whakarea ka paheko i ngā kīanga tau ōrite.
a+b=26 ab=7\times 15=105
Whakaarohia te 7w^{2}+26w+15. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 7w^{2}+aw+bw+15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,105 3,35 5,21 7,15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 105.
1+105=106 3+35=38 5+21=26 7+15=22
Tātaihia te tapeke mō ia takirua.
a=5 b=21
Ko te otinga te takirua ka hoatu i te tapeke 26.
\left(7w^{2}+5w\right)+\left(21w+15\right)
Tuhia anō te 7w^{2}+26w+15 hei \left(7w^{2}+5w\right)+\left(21w+15\right).
w\left(7w+5\right)+3\left(7w+5\right)
Tauwehea te w i te tuatahi me te 3 i te rōpū tuarua.
\left(7w+5\right)\left(w+3\right)
Whakatauwehea atu te kīanga pātahi 7w+5 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(7w+5\right)\left(w+3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
21w^{2}+78w+45
Pahekotia te 63w me 15w, ka 78w.