Tauwehe
3\left(w+3\right)\left(7w+5\right)
Aromātai
3\left(w+3\right)\left(7w+5\right)
Tohaina
Kua tāruatia ki te papatopenga
3\left(7w^{2}+21w+5w+15\right)
Tauwehea te 3.
7w^{2}+26w+15
Whakaarohia te 7w^{2}+21w+5w+15. Whakarea ka paheko i ngā kīanga tau ōrite.
a+b=26 ab=7\times 15=105
Whakaarohia te 7w^{2}+26w+15. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 7w^{2}+aw+bw+15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,105 3,35 5,21 7,15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 105.
1+105=106 3+35=38 5+21=26 7+15=22
Tātaihia te tapeke mō ia takirua.
a=5 b=21
Ko te otinga te takirua ka hoatu i te tapeke 26.
\left(7w^{2}+5w\right)+\left(21w+15\right)
Tuhia anō te 7w^{2}+26w+15 hei \left(7w^{2}+5w\right)+\left(21w+15\right).
w\left(7w+5\right)+3\left(7w+5\right)
Tauwehea te w i te tuatahi me te 3 i te rōpū tuarua.
\left(7w+5\right)\left(w+3\right)
Whakatauwehea atu te kīanga pātahi 7w+5 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(7w+5\right)\left(w+3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
21w^{2}+78w+45
Pahekotia te 63w me 15w, ka 78w.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}