Tīpoka ki ngā ihirangi matua
Whakaoti mō c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

21c^{2}-16c-6-1=-2c
Tangohia te 1 mai i ngā taha e rua.
21c^{2}-16c-7=-2c
Tangohia te 1 i te -6, ka -7.
21c^{2}-16c-7+2c=0
Me tāpiri te 2c ki ngā taha e rua.
21c^{2}-14c-7=0
Pahekotia te -16c me 2c, ka -14c.
3c^{2}-2c-1=0
Whakawehea ngā taha e rua ki te 7.
a+b=-2 ab=3\left(-1\right)=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3c^{2}+ac+bc-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(3c^{2}-3c\right)+\left(c-1\right)
Tuhia anō te 3c^{2}-2c-1 hei \left(3c^{2}-3c\right)+\left(c-1\right).
3c\left(c-1\right)+c-1
Whakatauwehea atu 3c i te 3c^{2}-3c.
\left(c-1\right)\left(3c+1\right)
Whakatauwehea atu te kīanga pātahi c-1 mā te whakamahi i te āhuatanga tātai tohatoha.
c=1 c=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te c-1=0 me te 3c+1=0.
21c^{2}-16c-6-1=-2c
Tangohia te 1 mai i ngā taha e rua.
21c^{2}-16c-7=-2c
Tangohia te 1 i te -6, ka -7.
21c^{2}-16c-7+2c=0
Me tāpiri te 2c ki ngā taha e rua.
21c^{2}-14c-7=0
Pahekotia te -16c me 2c, ka -14c.
c=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 21\left(-7\right)}}{2\times 21}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 21 mō a, -14 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-14\right)±\sqrt{196-4\times 21\left(-7\right)}}{2\times 21}
Pūrua -14.
c=\frac{-\left(-14\right)±\sqrt{196-84\left(-7\right)}}{2\times 21}
Whakareatia -4 ki te 21.
c=\frac{-\left(-14\right)±\sqrt{196+588}}{2\times 21}
Whakareatia -84 ki te -7.
c=\frac{-\left(-14\right)±\sqrt{784}}{2\times 21}
Tāpiri 196 ki te 588.
c=\frac{-\left(-14\right)±28}{2\times 21}
Tuhia te pūtakerua o te 784.
c=\frac{14±28}{2\times 21}
Ko te tauaro o -14 ko 14.
c=\frac{14±28}{42}
Whakareatia 2 ki te 21.
c=\frac{42}{42}
Nā, me whakaoti te whārite c=\frac{14±28}{42} ina he tāpiri te ±. Tāpiri 14 ki te 28.
c=1
Whakawehe 42 ki te 42.
c=-\frac{14}{42}
Nā, me whakaoti te whārite c=\frac{14±28}{42} ina he tango te ±. Tango 28 mai i 14.
c=-\frac{1}{3}
Whakahekea te hautanga \frac{-14}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
c=1 c=-\frac{1}{3}
Kua oti te whārite te whakatau.
21c^{2}-16c-6+2c=1
Me tāpiri te 2c ki ngā taha e rua.
21c^{2}-14c-6=1
Pahekotia te -16c me 2c, ka -14c.
21c^{2}-14c=1+6
Me tāpiri te 6 ki ngā taha e rua.
21c^{2}-14c=7
Tāpirihia te 1 ki te 6, ka 7.
\frac{21c^{2}-14c}{21}=\frac{7}{21}
Whakawehea ngā taha e rua ki te 21.
c^{2}+\left(-\frac{14}{21}\right)c=\frac{7}{21}
Mā te whakawehe ki te 21 ka wetekia te whakareanga ki te 21.
c^{2}-\frac{2}{3}c=\frac{7}{21}
Whakahekea te hautanga \frac{-14}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
c^{2}-\frac{2}{3}c=\frac{1}{3}
Whakahekea te hautanga \frac{7}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
c^{2}-\frac{2}{3}c+\left(-\frac{1}{3}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
c^{2}-\frac{2}{3}c+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
c^{2}-\frac{2}{3}c+\frac{1}{9}=\frac{4}{9}
Tāpiri \frac{1}{3} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(c-\frac{1}{3}\right)^{2}=\frac{4}{9}
Tauwehea c^{2}-\frac{2}{3}c+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-\frac{1}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
c-\frac{1}{3}=\frac{2}{3} c-\frac{1}{3}=-\frac{2}{3}
Whakarūnātia.
c=1 c=-\frac{1}{3}
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.