Whakaoti mō x
x=-7
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}-4x+21=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-4 ab=-21=-21
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-21 3,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
1-21=-20 3-7=-4
Tātaihia te tapeke mō ia takirua.
a=3 b=-7
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(-x^{2}+3x\right)+\left(-7x+21\right)
Tuhia anō te -x^{2}-4x+21 hei \left(-x^{2}+3x\right)+\left(-7x+21\right).
x\left(-x+3\right)+7\left(-x+3\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(-x+3\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi -x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-7
Hei kimi otinga whārite, me whakaoti te -x+3=0 me te x+7=0.
-x^{2}-4x+21=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 21}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -4 mō b, me 21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 21}}{2\left(-1\right)}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 21}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-4\right)±\sqrt{16+84}}{2\left(-1\right)}
Whakareatia 4 ki te 21.
x=\frac{-\left(-4\right)±\sqrt{100}}{2\left(-1\right)}
Tāpiri 16 ki te 84.
x=\frac{-\left(-4\right)±10}{2\left(-1\right)}
Tuhia te pūtakerua o te 100.
x=\frac{4±10}{2\left(-1\right)}
Ko te tauaro o -4 ko 4.
x=\frac{4±10}{-2}
Whakareatia 2 ki te -1.
x=\frac{14}{-2}
Nā, me whakaoti te whārite x=\frac{4±10}{-2} ina he tāpiri te ±. Tāpiri 4 ki te 10.
x=-7
Whakawehe 14 ki te -2.
x=-\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{4±10}{-2} ina he tango te ±. Tango 10 mai i 4.
x=3
Whakawehe -6 ki te -2.
x=-7 x=3
Kua oti te whārite te whakatau.
-x^{2}-4x+21=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}-4x+21-21=-21
Me tango 21 mai i ngā taha e rua o te whārite.
-x^{2}-4x=-21
Mā te tango i te 21 i a ia ake anō ka toe ko te 0.
\frac{-x^{2}-4x}{-1}=-\frac{21}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{21}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+4x=-\frac{21}{-1}
Whakawehe -4 ki te -1.
x^{2}+4x=21
Whakawehe -21 ki te -1.
x^{2}+4x+2^{2}=21+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=21+4
Pūrua 2.
x^{2}+4x+4=25
Tāpiri 21 ki te 4.
\left(x+2\right)^{2}=25
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=5 x+2=-5
Whakarūnātia.
x=3 x=-7
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}