Whakaoti mō x
x = \frac{32}{7} = 4\frac{4}{7} \approx 4.571428571
Graph
Tohaina
Kua tāruatia ki te papatopenga
21-\left(5x-3x-\left(-1\right)\right)=5x-12
Hei kimi i te tauaro o 3x-1, kimihia te tauaro o ia taurangi.
21-\left(5x-3x+1\right)=5x-12
Ko te tauaro o -1 ko 1.
21-\left(2x+1\right)=5x-12
Pahekotia te 5x me -3x, ka 2x.
21-2x-1=5x-12
Hei kimi i te tauaro o 2x+1, kimihia te tauaro o ia taurangi.
20-2x=5x-12
Tangohia te 1 i te 21, ka 20.
20-2x-5x=-12
Tangohia te 5x mai i ngā taha e rua.
20-7x=-12
Pahekotia te -2x me -5x, ka -7x.
-7x=-12-20
Tangohia te 20 mai i ngā taha e rua.
-7x=-32
Tangohia te 20 i te -12, ka -32.
x=\frac{-32}{-7}
Whakawehea ngā taha e rua ki te -7.
x=\frac{32}{7}
Ka taea te hautanga \frac{-32}{-7} te whakamāmā ki te \frac{32}{7} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}