Tauwehe
3\left(7t^{2}-4t+1\right)
Aromātai
21t^{2}-12t+3
Tohaina
Kua tāruatia ki te papatopenga
3\left(7t^{2}-4t+1\right)
Tauwehea te 3. Kāore te pūrau 7t^{2}-4t+1 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
21t^{2}-12t+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 21\times 3}}{2\times 21}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-12\right)±\sqrt{144-4\times 21\times 3}}{2\times 21}
Pūrua -12.
t=\frac{-\left(-12\right)±\sqrt{144-84\times 3}}{2\times 21}
Whakareatia -4 ki te 21.
t=\frac{-\left(-12\right)±\sqrt{144-252}}{2\times 21}
Whakareatia -84 ki te 3.
t=\frac{-\left(-12\right)±\sqrt{-108}}{2\times 21}
Tāpiri 144 ki te -252.
21t^{2}-12t+3
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā. Kāore e taea te pūrau pūrua te whakatauwehe.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}