Whakaoti mō x
x = \frac{12}{7} = 1\frac{5}{7} \approx 1.714285714
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
21\left(x^{2}-4x+4\right)-\left(x-2\right)=2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
21x^{2}-84x+84-\left(x-2\right)=2
Whakamahia te āhuatanga tohatoha hei whakarea te 21 ki te x^{2}-4x+4.
21x^{2}-84x+84-x+2=2
Hei kimi i te tauaro o x-2, kimihia te tauaro o ia taurangi.
21x^{2}-85x+84+2=2
Pahekotia te -84x me -x, ka -85x.
21x^{2}-85x+86=2
Tāpirihia te 84 ki te 2, ka 86.
21x^{2}-85x+86-2=0
Tangohia te 2 mai i ngā taha e rua.
21x^{2}-85x+84=0
Tangohia te 2 i te 86, ka 84.
x=\frac{-\left(-85\right)±\sqrt{\left(-85\right)^{2}-4\times 21\times 84}}{2\times 21}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 21 mō a, -85 mō b, me 84 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-85\right)±\sqrt{7225-4\times 21\times 84}}{2\times 21}
Pūrua -85.
x=\frac{-\left(-85\right)±\sqrt{7225-84\times 84}}{2\times 21}
Whakareatia -4 ki te 21.
x=\frac{-\left(-85\right)±\sqrt{7225-7056}}{2\times 21}
Whakareatia -84 ki te 84.
x=\frac{-\left(-85\right)±\sqrt{169}}{2\times 21}
Tāpiri 7225 ki te -7056.
x=\frac{-\left(-85\right)±13}{2\times 21}
Tuhia te pūtakerua o te 169.
x=\frac{85±13}{2\times 21}
Ko te tauaro o -85 ko 85.
x=\frac{85±13}{42}
Whakareatia 2 ki te 21.
x=\frac{98}{42}
Nā, me whakaoti te whārite x=\frac{85±13}{42} ina he tāpiri te ±. Tāpiri 85 ki te 13.
x=\frac{7}{3}
Whakahekea te hautanga \frac{98}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
x=\frac{72}{42}
Nā, me whakaoti te whārite x=\frac{85±13}{42} ina he tango te ±. Tango 13 mai i 85.
x=\frac{12}{7}
Whakahekea te hautanga \frac{72}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{7}{3} x=\frac{12}{7}
Kua oti te whārite te whakatau.
21\left(x^{2}-4x+4\right)-\left(x-2\right)=2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
21x^{2}-84x+84-\left(x-2\right)=2
Whakamahia te āhuatanga tohatoha hei whakarea te 21 ki te x^{2}-4x+4.
21x^{2}-84x+84-x+2=2
Hei kimi i te tauaro o x-2, kimihia te tauaro o ia taurangi.
21x^{2}-85x+84+2=2
Pahekotia te -84x me -x, ka -85x.
21x^{2}-85x+86=2
Tāpirihia te 84 ki te 2, ka 86.
21x^{2}-85x=2-86
Tangohia te 86 mai i ngā taha e rua.
21x^{2}-85x=-84
Tangohia te 86 i te 2, ka -84.
\frac{21x^{2}-85x}{21}=-\frac{84}{21}
Whakawehea ngā taha e rua ki te 21.
x^{2}-\frac{85}{21}x=-\frac{84}{21}
Mā te whakawehe ki te 21 ka wetekia te whakareanga ki te 21.
x^{2}-\frac{85}{21}x=-4
Whakawehe -84 ki te 21.
x^{2}-\frac{85}{21}x+\left(-\frac{85}{42}\right)^{2}=-4+\left(-\frac{85}{42}\right)^{2}
Whakawehea te -\frac{85}{21}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{85}{42}. Nā, tāpiria te pūrua o te -\frac{85}{42} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{85}{21}x+\frac{7225}{1764}=-4+\frac{7225}{1764}
Pūruatia -\frac{85}{42} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{85}{21}x+\frac{7225}{1764}=\frac{169}{1764}
Tāpiri -4 ki te \frac{7225}{1764}.
\left(x-\frac{85}{42}\right)^{2}=\frac{169}{1764}
Tauwehea x^{2}-\frac{85}{21}x+\frac{7225}{1764}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{85}{42}\right)^{2}}=\sqrt{\frac{169}{1764}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{85}{42}=\frac{13}{42} x-\frac{85}{42}=-\frac{13}{42}
Whakarūnātia.
x=\frac{7}{3} x=\frac{12}{7}
Me tāpiri \frac{85}{42} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}