Whakaoti mō x
x=\frac{\sqrt{21}}{200000000}\approx 0.000000023
x=-\frac{\sqrt{21}}{200000000}\approx -0.000000023
Graph
Tohaina
Kua tāruatia ki te papatopenga
21\times \frac{1}{1000}=\frac{9\times 10^{9}x^{2}}{\left(15\times 10^{-3}\right)^{2}}
Tātaihia te 10 mā te pū o -3, kia riro ko \frac{1}{1000}.
\frac{21}{1000}=\frac{9\times 10^{9}x^{2}}{\left(15\times 10^{-3}\right)^{2}}
Whakareatia te 21 ki te \frac{1}{1000}, ka \frac{21}{1000}.
\frac{21}{1000}=\frac{9\times 1000000000x^{2}}{\left(15\times 10^{-3}\right)^{2}}
Tātaihia te 10 mā te pū o 9, kia riro ko 1000000000.
\frac{21}{1000}=\frac{9000000000x^{2}}{\left(15\times 10^{-3}\right)^{2}}
Whakareatia te 9 ki te 1000000000, ka 9000000000.
\frac{21}{1000}=\frac{9000000000x^{2}}{\left(15\times \frac{1}{1000}\right)^{2}}
Tātaihia te 10 mā te pū o -3, kia riro ko \frac{1}{1000}.
\frac{21}{1000}=\frac{9000000000x^{2}}{\left(\frac{3}{200}\right)^{2}}
Whakareatia te 15 ki te \frac{1}{1000}, ka \frac{3}{200}.
\frac{21}{1000}=\frac{9000000000x^{2}}{\frac{9}{40000}}
Tātaihia te \frac{3}{200} mā te pū o 2, kia riro ko \frac{9}{40000}.
\frac{21}{1000}=40000000000000x^{2}
Whakawehea te 9000000000x^{2} ki te \frac{9}{40000}, kia riro ko 40000000000000x^{2}.
40000000000000x^{2}=\frac{21}{1000}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{\frac{21}{1000}}{40000000000000}
Whakawehea ngā taha e rua ki te 40000000000000.
x^{2}=\frac{21}{1000\times 40000000000000}
Tuhia te \frac{\frac{21}{1000}}{40000000000000} hei hautanga kotahi.
x^{2}=\frac{21}{40000000000000000}
Whakareatia te 1000 ki te 40000000000000, ka 40000000000000000.
x=\frac{\sqrt{21}}{200000000} x=-\frac{\sqrt{21}}{200000000}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
21\times \frac{1}{1000}=\frac{9\times 10^{9}x^{2}}{\left(15\times 10^{-3}\right)^{2}}
Tātaihia te 10 mā te pū o -3, kia riro ko \frac{1}{1000}.
\frac{21}{1000}=\frac{9\times 10^{9}x^{2}}{\left(15\times 10^{-3}\right)^{2}}
Whakareatia te 21 ki te \frac{1}{1000}, ka \frac{21}{1000}.
\frac{21}{1000}=\frac{9\times 1000000000x^{2}}{\left(15\times 10^{-3}\right)^{2}}
Tātaihia te 10 mā te pū o 9, kia riro ko 1000000000.
\frac{21}{1000}=\frac{9000000000x^{2}}{\left(15\times 10^{-3}\right)^{2}}
Whakareatia te 9 ki te 1000000000, ka 9000000000.
\frac{21}{1000}=\frac{9000000000x^{2}}{\left(15\times \frac{1}{1000}\right)^{2}}
Tātaihia te 10 mā te pū o -3, kia riro ko \frac{1}{1000}.
\frac{21}{1000}=\frac{9000000000x^{2}}{\left(\frac{3}{200}\right)^{2}}
Whakareatia te 15 ki te \frac{1}{1000}, ka \frac{3}{200}.
\frac{21}{1000}=\frac{9000000000x^{2}}{\frac{9}{40000}}
Tātaihia te \frac{3}{200} mā te pū o 2, kia riro ko \frac{9}{40000}.
\frac{21}{1000}=40000000000000x^{2}
Whakawehea te 9000000000x^{2} ki te \frac{9}{40000}, kia riro ko 40000000000000x^{2}.
40000000000000x^{2}=\frac{21}{1000}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
40000000000000x^{2}-\frac{21}{1000}=0
Tangohia te \frac{21}{1000} mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 40000000000000\left(-\frac{21}{1000}\right)}}{2\times 40000000000000}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 40000000000000 mō a, 0 mō b, me -\frac{21}{1000} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 40000000000000\left(-\frac{21}{1000}\right)}}{2\times 40000000000000}
Pūrua 0.
x=\frac{0±\sqrt{-160000000000000\left(-\frac{21}{1000}\right)}}{2\times 40000000000000}
Whakareatia -4 ki te 40000000000000.
x=\frac{0±\sqrt{3360000000000}}{2\times 40000000000000}
Whakareatia -160000000000000 ki te -\frac{21}{1000}.
x=\frac{0±400000\sqrt{21}}{2\times 40000000000000}
Tuhia te pūtakerua o te 3360000000000.
x=\frac{0±400000\sqrt{21}}{80000000000000}
Whakareatia 2 ki te 40000000000000.
x=\frac{\sqrt{21}}{200000000}
Nā, me whakaoti te whārite x=\frac{0±400000\sqrt{21}}{80000000000000} ina he tāpiri te ±.
x=-\frac{\sqrt{21}}{200000000}
Nā, me whakaoti te whārite x=\frac{0±400000\sqrt{21}}{80000000000000} ina he tango te ±.
x=\frac{\sqrt{21}}{200000000} x=-\frac{\sqrt{21}}{200000000}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}