Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{21}{8}+\frac{16}{8}-12\times 3=2
Me tahuri te 2 ki te hautau \frac{16}{8}.
\frac{21+16}{8}-12\times 3=2
Tā te mea he rite te tauraro o \frac{21}{8} me \frac{16}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{37}{8}-12\times 3=2
Tāpirihia te 21 ki te 16, ka 37.
\frac{37}{8}-36=2
Whakareatia te 12 ki te 3, ka 36.
\frac{37}{8}-\frac{288}{8}=2
Me tahuri te 36 ki te hautau \frac{288}{8}.
\frac{37-288}{8}=2
Tā te mea he rite te tauraro o \frac{37}{8} me \frac{288}{8}, me tango rāua mā te tango i ō raua taurunga.
-\frac{251}{8}=2
Tangohia te 288 i te 37, ka -251.
-\frac{251}{8}=\frac{16}{8}
Me tahuri te 2 ki te hautau \frac{16}{8}.
\text{false}
Whakatauritea te -\frac{251}{8} me te \frac{16}{8}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}