Aromātai
\frac{27}{5}=5.4
Tauwehe
\frac{3 ^ {3}}{5} = 5\frac{2}{5} = 5.4
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
21 \div ( 1 \frac { 3 } { 4 } \times 2 \frac { 2 } { 9 } )
Tohaina
Kua tāruatia ki te papatopenga
\frac{21}{\frac{4+3}{4}\times \frac{2\times 9+2}{9}}
Whakareatia te 1 ki te 4, ka 4.
\frac{21}{\frac{7}{4}\times \frac{2\times 9+2}{9}}
Tāpirihia te 4 ki te 3, ka 7.
\frac{21}{\frac{7}{4}\times \frac{18+2}{9}}
Whakareatia te 2 ki te 9, ka 18.
\frac{21}{\frac{7}{4}\times \frac{20}{9}}
Tāpirihia te 18 ki te 2, ka 20.
\frac{21}{\frac{7\times 20}{4\times 9}}
Me whakarea te \frac{7}{4} ki te \frac{20}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{21}{\frac{140}{36}}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 20}{4\times 9}.
\frac{21}{\frac{35}{9}}
Whakahekea te hautanga \frac{140}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
21\times \frac{9}{35}
Whakawehe 21 ki te \frac{35}{9} mā te whakarea 21 ki te tau huripoki o \frac{35}{9}.
\frac{21\times 9}{35}
Tuhia te 21\times \frac{9}{35} hei hautanga kotahi.
\frac{189}{35}
Whakareatia te 21 ki te 9, ka 189.
\frac{27}{5}
Whakahekea te hautanga \frac{189}{35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}