21 \% = x + ( x - 78 \% ) \times 1025
Whakaoti mō x
x=\frac{1403}{1800}\approx 0.779444444
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{21}{100}=x+\left(x-\frac{39}{50}\right)\times 1025
Whakahekea te hautanga \frac{78}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{21}{100}=x+1025x-\frac{39}{50}\times 1025
Whakamahia te āhuatanga tohatoha hei whakarea te x-\frac{39}{50} ki te 1025.
\frac{21}{100}=x+1025x+\frac{-39\times 1025}{50}
Tuhia te -\frac{39}{50}\times 1025 hei hautanga kotahi.
\frac{21}{100}=x+1025x+\frac{-39975}{50}
Whakareatia te -39 ki te 1025, ka -39975.
\frac{21}{100}=x+1025x-\frac{1599}{2}
Whakahekea te hautanga \frac{-39975}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{21}{100}=1026x-\frac{1599}{2}
Pahekotia te x me 1025x, ka 1026x.
1026x-\frac{1599}{2}=\frac{21}{100}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1026x=\frac{21}{100}+\frac{1599}{2}
Me tāpiri te \frac{1599}{2} ki ngā taha e rua.
1026x=\frac{21}{100}+\frac{79950}{100}
Ko te maha noa iti rawa atu o 100 me 2 ko 100. Me tahuri \frac{21}{100} me \frac{1599}{2} ki te hautau me te tautūnga 100.
1026x=\frac{21+79950}{100}
Tā te mea he rite te tauraro o \frac{21}{100} me \frac{79950}{100}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1026x=\frac{79971}{100}
Tāpirihia te 21 ki te 79950, ka 79971.
x=\frac{\frac{79971}{100}}{1026}
Whakawehea ngā taha e rua ki te 1026.
x=\frac{79971}{100\times 1026}
Tuhia te \frac{\frac{79971}{100}}{1026} hei hautanga kotahi.
x=\frac{79971}{102600}
Whakareatia te 100 ki te 1026, ka 102600.
x=\frac{1403}{1800}
Whakahekea te hautanga \frac{79971}{102600} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 57.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}