Aromātai
\frac{1653}{4}=413.25
Tauwehe
\frac{3 \cdot 19 \cdot 29}{2 ^ {2}} = 413\frac{1}{4} = 413.25
Tohaina
Kua tāruatia ki te papatopenga
\frac{21\times 81}{2\times 2}-12
Me whakarea te \frac{21}{2} ki te \frac{81}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1701}{4}-12
Mahia ngā whakarea i roto i te hautanga \frac{21\times 81}{2\times 2}.
\frac{1701}{4}-\frac{48}{4}
Me tahuri te 12 ki te hautau \frac{48}{4}.
\frac{1701-48}{4}
Tā te mea he rite te tauraro o \frac{1701}{4} me \frac{48}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{1653}{4}
Tangohia te 48 i te 1701, ka 1653.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}