Tauwehe
\left(-5m-7\right)\left(2m-3\right)
Aromātai
21+m-10m^{2}
Tohaina
Kua tāruatia ki te papatopenga
-10m^{2}+m+21
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=1 ab=-10\times 21=-210
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -10m^{2}+am+bm+21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,210 -2,105 -3,70 -5,42 -6,35 -7,30 -10,21 -14,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -210.
-1+210=209 -2+105=103 -3+70=67 -5+42=37 -6+35=29 -7+30=23 -10+21=11 -14+15=1
Tātaihia te tapeke mō ia takirua.
a=15 b=-14
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(-10m^{2}+15m\right)+\left(-14m+21\right)
Tuhia anō te -10m^{2}+m+21 hei \left(-10m^{2}+15m\right)+\left(-14m+21\right).
-5m\left(2m-3\right)-7\left(2m-3\right)
Tauwehea te -5m i te tuatahi me te -7 i te rōpū tuarua.
\left(2m-3\right)\left(-5m-7\right)
Whakatauwehea atu te kīanga pātahi 2m-3 mā te whakamahi i te āhuatanga tātai tohatoha.
-10m^{2}+m+21=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-1±\sqrt{1^{2}-4\left(-10\right)\times 21}}{2\left(-10\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-1±\sqrt{1-4\left(-10\right)\times 21}}{2\left(-10\right)}
Pūrua 1.
m=\frac{-1±\sqrt{1+40\times 21}}{2\left(-10\right)}
Whakareatia -4 ki te -10.
m=\frac{-1±\sqrt{1+840}}{2\left(-10\right)}
Whakareatia 40 ki te 21.
m=\frac{-1±\sqrt{841}}{2\left(-10\right)}
Tāpiri 1 ki te 840.
m=\frac{-1±29}{2\left(-10\right)}
Tuhia te pūtakerua o te 841.
m=\frac{-1±29}{-20}
Whakareatia 2 ki te -10.
m=\frac{28}{-20}
Nā, me whakaoti te whārite m=\frac{-1±29}{-20} ina he tāpiri te ±. Tāpiri -1 ki te 29.
m=-\frac{7}{5}
Whakahekea te hautanga \frac{28}{-20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
m=-\frac{30}{-20}
Nā, me whakaoti te whārite m=\frac{-1±29}{-20} ina he tango te ±. Tango 29 mai i -1.
m=\frac{3}{2}
Whakahekea te hautanga \frac{-30}{-20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
-10m^{2}+m+21=-10\left(m-\left(-\frac{7}{5}\right)\right)\left(m-\frac{3}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{7}{5} mō te x_{1} me te \frac{3}{2} mō te x_{2}.
-10m^{2}+m+21=-10\left(m+\frac{7}{5}\right)\left(m-\frac{3}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-10m^{2}+m+21=-10\times \frac{-5m-7}{-5}\left(m-\frac{3}{2}\right)
Tāpiri \frac{7}{5} ki te m mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-10m^{2}+m+21=-10\times \frac{-5m-7}{-5}\times \frac{-2m+3}{-2}
Tango \frac{3}{2} mai i m mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-10m^{2}+m+21=-10\times \frac{\left(-5m-7\right)\left(-2m+3\right)}{-5\left(-2\right)}
Whakareatia \frac{-5m-7}{-5} ki te \frac{-2m+3}{-2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-10m^{2}+m+21=-10\times \frac{\left(-5m-7\right)\left(-2m+3\right)}{10}
Whakareatia -5 ki te -2.
-10m^{2}+m+21=-\left(-5m-7\right)\left(-2m+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te -10 me te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}