Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

40x=8x^{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
40x-8x^{2}=0
Tangohia te 8x^{2} mai i ngā taha e rua.
x\left(40-8x\right)=0
Tauwehea te x.
x=0 x=5
Hei kimi otinga whārite, me whakaoti te x=0 me te 40-8x=0.
40x=8x^{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
40x-8x^{2}=0
Tangohia te 8x^{2} mai i ngā taha e rua.
-8x^{2}+40x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-40±\sqrt{40^{2}}}{2\left(-8\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -8 mō a, 40 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±40}{2\left(-8\right)}
Tuhia te pūtakerua o te 40^{2}.
x=\frac{-40±40}{-16}
Whakareatia 2 ki te -8.
x=\frac{0}{-16}
Nā, me whakaoti te whārite x=\frac{-40±40}{-16} ina he tāpiri te ±. Tāpiri -40 ki te 40.
x=0
Whakawehe 0 ki te -16.
x=-\frac{80}{-16}
Nā, me whakaoti te whārite x=\frac{-40±40}{-16} ina he tango te ±. Tango 40 mai i -40.
x=5
Whakawehe -80 ki te -16.
x=0 x=5
Kua oti te whārite te whakatau.
40x=8x^{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
40x-8x^{2}=0
Tangohia te 8x^{2} mai i ngā taha e rua.
-8x^{2}+40x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-8x^{2}+40x}{-8}=\frac{0}{-8}
Whakawehea ngā taha e rua ki te -8.
x^{2}+\frac{40}{-8}x=\frac{0}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x^{2}-5x=\frac{0}{-8}
Whakawehe 40 ki te -8.
x^{2}-5x=0
Whakawehe 0 ki te -8.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Whakarūnātia.
x=5 x=0
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.