Aromātai
\frac{2021\sqrt{3}}{8}\approx 437.559335262
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
2021 \times \frac{ 3 }{ 2 } \sqrt{ \frac{ 1-052 }{ 50-2 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{2021\times 3}{2}\sqrt{\frac{1-0\times 52}{50-2}}
Tuhia te 2021\times \frac{3}{2} hei hautanga kotahi.
\frac{6063}{2}\sqrt{\frac{1-0\times 52}{50-2}}
Whakareatia te 2021 ki te 3, ka 6063.
\frac{6063}{2}\sqrt{\frac{1-0}{50-2}}
Whakareatia te 0 ki te 52, ka 0.
\frac{6063}{2}\sqrt{\frac{1}{50-2}}
Tangohia te 0 i te 1, ka 1.
\frac{6063}{2}\sqrt{\frac{1}{48}}
Tangohia te 2 i te 50, ka 48.
\frac{6063}{2}\times \frac{\sqrt{1}}{\sqrt{48}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{48}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{48}}.
\frac{6063}{2}\times \frac{1}{\sqrt{48}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{6063}{2}\times \frac{1}{4\sqrt{3}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{6063}{2}\times \frac{\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{4\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{6063}{2}\times \frac{\sqrt{3}}{4\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{6063}{2}\times \frac{\sqrt{3}}{12}
Whakareatia te 4 ki te 3, ka 12.
\frac{6063\sqrt{3}}{2\times 12}
Me whakarea te \frac{6063}{2} ki te \frac{\sqrt{3}}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2021\sqrt{3}}{2\times 4}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{2021\sqrt{3}}{8}
Whakareatia te 2 ki te 4, ka 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}