Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2021\times 3}{2}\sqrt{\frac{1-0\times 52}{50-2}}
Tuhia te 2021\times \frac{3}{2} hei hautanga kotahi.
\frac{6063}{2}\sqrt{\frac{1-0\times 52}{50-2}}
Whakareatia te 2021 ki te 3, ka 6063.
\frac{6063}{2}\sqrt{\frac{1-0}{50-2}}
Whakareatia te 0 ki te 52, ka 0.
\frac{6063}{2}\sqrt{\frac{1}{50-2}}
Tangohia te 0 i te 1, ka 1.
\frac{6063}{2}\sqrt{\frac{1}{48}}
Tangohia te 2 i te 50, ka 48.
\frac{6063}{2}\times \frac{\sqrt{1}}{\sqrt{48}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{48}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{48}}.
\frac{6063}{2}\times \frac{1}{\sqrt{48}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{6063}{2}\times \frac{1}{4\sqrt{3}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{6063}{2}\times \frac{\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{4\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{6063}{2}\times \frac{\sqrt{3}}{4\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{6063}{2}\times \frac{\sqrt{3}}{12}
Whakareatia te 4 ki te 3, ka 12.
\frac{6063\sqrt{3}}{2\times 12}
Me whakarea te \frac{6063}{2} ki te \frac{\sqrt{3}}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2021\sqrt{3}}{2\times 4}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{2021\sqrt{3}}{8}
Whakareatia te 2 ki te 4, ka 8.