Aromātai
10\sqrt{3}\approx 17.320508076
Tohaina
Kua tāruatia ki te papatopenga
\frac{20000000}{\sqrt{\frac{8000000000000}{6}}}
Whakarohaina te \frac{80000000000}{0.06} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{20000000}{\sqrt{\frac{4000000000000}{3}}}
Whakahekea te hautanga \frac{8000000000000}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{20000000}{\frac{\sqrt{4000000000000}}{\sqrt{3}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{4000000000000}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4000000000000}}{\sqrt{3}}.
\frac{20000000}{\frac{2000000}{\sqrt{3}}}
Tātaitia te pūtakerua o 4000000000000 kia tae ki 2000000.
\frac{20000000}{\frac{2000000\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{2000000}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{20000000}{\frac{2000000\sqrt{3}}{3}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{20000000\times 3}{2000000\sqrt{3}}
Whakawehe 20000000 ki te \frac{2000000\sqrt{3}}{3} mā te whakarea 20000000 ki te tau huripoki o \frac{2000000\sqrt{3}}{3}.
\frac{3\times 10}{\sqrt{3}}
Me whakakore tahi te 2000000 i te taurunga me te tauraro.
\frac{3\times 10\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\times 10}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{3\times 10\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{30\sqrt{3}}{3}
Whakareatia te 3 ki te 10, ka 30.
10\sqrt{3}
Whakawehea te 30\sqrt{3} ki te 3, kia riro ko 10\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}