Whakaoti mō x
x = \frac{500 \sqrt{159898} + 200000}{51} \approx 7841.88705562
x = \frac{200000 - 500 \sqrt{159898}}{51} \approx 1.250199282
Graph
Tohaina
Kua tāruatia ki te papatopenga
2000000+204xx=1600000x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
2000000+204x^{2}=1600000x
Whakareatia te x ki te x, ka x^{2}.
2000000+204x^{2}-1600000x=0
Tangohia te 1600000x mai i ngā taha e rua.
204x^{2}-1600000x+2000000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1600000\right)±\sqrt{\left(-1600000\right)^{2}-4\times 204\times 2000000}}{2\times 204}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 204 mō a, -1600000 mō b, me 2000000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1600000\right)±\sqrt{2560000000000-4\times 204\times 2000000}}{2\times 204}
Pūrua -1600000.
x=\frac{-\left(-1600000\right)±\sqrt{2560000000000-816\times 2000000}}{2\times 204}
Whakareatia -4 ki te 204.
x=\frac{-\left(-1600000\right)±\sqrt{2560000000000-1632000000}}{2\times 204}
Whakareatia -816 ki te 2000000.
x=\frac{-\left(-1600000\right)±\sqrt{2558368000000}}{2\times 204}
Tāpiri 2560000000000 ki te -1632000000.
x=\frac{-\left(-1600000\right)±4000\sqrt{159898}}{2\times 204}
Tuhia te pūtakerua o te 2558368000000.
x=\frac{1600000±4000\sqrt{159898}}{2\times 204}
Ko te tauaro o -1600000 ko 1600000.
x=\frac{1600000±4000\sqrt{159898}}{408}
Whakareatia 2 ki te 204.
x=\frac{4000\sqrt{159898}+1600000}{408}
Nā, me whakaoti te whārite x=\frac{1600000±4000\sqrt{159898}}{408} ina he tāpiri te ±. Tāpiri 1600000 ki te 4000\sqrt{159898}.
x=\frac{500\sqrt{159898}+200000}{51}
Whakawehe 1600000+4000\sqrt{159898} ki te 408.
x=\frac{1600000-4000\sqrt{159898}}{408}
Nā, me whakaoti te whārite x=\frac{1600000±4000\sqrt{159898}}{408} ina he tango te ±. Tango 4000\sqrt{159898} mai i 1600000.
x=\frac{200000-500\sqrt{159898}}{51}
Whakawehe 1600000-4000\sqrt{159898} ki te 408.
x=\frac{500\sqrt{159898}+200000}{51} x=\frac{200000-500\sqrt{159898}}{51}
Kua oti te whārite te whakatau.
2000000+204xx=1600000x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
2000000+204x^{2}=1600000x
Whakareatia te x ki te x, ka x^{2}.
2000000+204x^{2}-1600000x=0
Tangohia te 1600000x mai i ngā taha e rua.
204x^{2}-1600000x=-2000000
Tangohia te 2000000 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{204x^{2}-1600000x}{204}=-\frac{2000000}{204}
Whakawehea ngā taha e rua ki te 204.
x^{2}+\left(-\frac{1600000}{204}\right)x=-\frac{2000000}{204}
Mā te whakawehe ki te 204 ka wetekia te whakareanga ki te 204.
x^{2}-\frac{400000}{51}x=-\frac{2000000}{204}
Whakahekea te hautanga \frac{-1600000}{204} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{400000}{51}x=-\frac{500000}{51}
Whakahekea te hautanga \frac{-2000000}{204} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{400000}{51}x+\left(-\frac{200000}{51}\right)^{2}=-\frac{500000}{51}+\left(-\frac{200000}{51}\right)^{2}
Whakawehea te -\frac{400000}{51}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{200000}{51}. Nā, tāpiria te pūrua o te -\frac{200000}{51} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{400000}{51}x+\frac{40000000000}{2601}=-\frac{500000}{51}+\frac{40000000000}{2601}
Pūruatia -\frac{200000}{51} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{400000}{51}x+\frac{40000000000}{2601}=\frac{39974500000}{2601}
Tāpiri -\frac{500000}{51} ki te \frac{40000000000}{2601} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{200000}{51}\right)^{2}=\frac{39974500000}{2601}
Tauwehea x^{2}-\frac{400000}{51}x+\frac{40000000000}{2601}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{200000}{51}\right)^{2}}=\sqrt{\frac{39974500000}{2601}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{200000}{51}=\frac{500\sqrt{159898}}{51} x-\frac{200000}{51}=-\frac{500\sqrt{159898}}{51}
Whakarūnātia.
x=\frac{500\sqrt{159898}+200000}{51} x=\frac{200000-500\sqrt{159898}}{51}
Me tāpiri \frac{200000}{51} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}