Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

200x^{2}+80x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-80±\sqrt{80^{2}-4\times 200\left(-9\right)}}{2\times 200}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 200 mō a, 80 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\times 200\left(-9\right)}}{2\times 200}
Pūrua 80.
x=\frac{-80±\sqrt{6400-800\left(-9\right)}}{2\times 200}
Whakareatia -4 ki te 200.
x=\frac{-80±\sqrt{6400+7200}}{2\times 200}
Whakareatia -800 ki te -9.
x=\frac{-80±\sqrt{13600}}{2\times 200}
Tāpiri 6400 ki te 7200.
x=\frac{-80±20\sqrt{34}}{2\times 200}
Tuhia te pūtakerua o te 13600.
x=\frac{-80±20\sqrt{34}}{400}
Whakareatia 2 ki te 200.
x=\frac{20\sqrt{34}-80}{400}
Nā, me whakaoti te whārite x=\frac{-80±20\sqrt{34}}{400} ina he tāpiri te ±. Tāpiri -80 ki te 20\sqrt{34}.
x=\frac{\sqrt{34}}{20}-\frac{1}{5}
Whakawehe -80+20\sqrt{34} ki te 400.
x=\frac{-20\sqrt{34}-80}{400}
Nā, me whakaoti te whārite x=\frac{-80±20\sqrt{34}}{400} ina he tango te ±. Tango 20\sqrt{34} mai i -80.
x=-\frac{\sqrt{34}}{20}-\frac{1}{5}
Whakawehe -80-20\sqrt{34} ki te 400.
x=\frac{\sqrt{34}}{20}-\frac{1}{5} x=-\frac{\sqrt{34}}{20}-\frac{1}{5}
Kua oti te whārite te whakatau.
200x^{2}+80x-9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
200x^{2}+80x-9-\left(-9\right)=-\left(-9\right)
Me tāpiri 9 ki ngā taha e rua o te whārite.
200x^{2}+80x=-\left(-9\right)
Mā te tango i te -9 i a ia ake anō ka toe ko te 0.
200x^{2}+80x=9
Tango -9 mai i 0.
\frac{200x^{2}+80x}{200}=\frac{9}{200}
Whakawehea ngā taha e rua ki te 200.
x^{2}+\frac{80}{200}x=\frac{9}{200}
Mā te whakawehe ki te 200 ka wetekia te whakareanga ki te 200.
x^{2}+\frac{2}{5}x=\frac{9}{200}
Whakahekea te hautanga \frac{80}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=\frac{9}{200}+\left(\frac{1}{5}\right)^{2}
Whakawehea te \frac{2}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{5}. Nā, tāpiria te pūrua o te \frac{1}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{9}{200}+\frac{1}{25}
Pūruatia \frac{1}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{17}{200}
Tāpiri \frac{9}{200} ki te \frac{1}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{5}\right)^{2}=\frac{17}{200}
Tauwehea x^{2}+\frac{2}{5}x+\frac{1}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{\frac{17}{200}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{5}=\frac{\sqrt{34}}{20} x+\frac{1}{5}=-\frac{\sqrt{34}}{20}
Whakarūnātia.
x=\frac{\sqrt{34}}{20}-\frac{1}{5} x=-\frac{\sqrt{34}}{20}-\frac{1}{5}
Me tango \frac{1}{5} mai i ngā taha e rua o te whārite.