Aromātai
-32
Tauwehe
-32
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
200 - ( \frac { 87 } { 9 } + \frac { 125 } { 18 } 0 ) 24
Tohaina
Kua tāruatia ki te papatopenga
200-\left(\frac{29}{3}+\frac{125}{18}\times 0\right)\times 24
Whakahekea te hautanga \frac{87}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
200-\left(\frac{29}{3}+0\right)\times 24
Whakareatia te \frac{125}{18} ki te 0, ka 0.
200-\frac{29}{3}\times 24
Tāpirihia te \frac{29}{3} ki te 0, ka \frac{29}{3}.
200-\frac{29\times 24}{3}
Tuhia te \frac{29}{3}\times 24 hei hautanga kotahi.
200-\frac{696}{3}
Whakareatia te 29 ki te 24, ka 696.
200-232
Whakawehea te 696 ki te 3, kia riro ko 232.
-32
Tangohia te 232 i te 200, ka -32.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}