Whakaoti mō A
A=\frac{124}{5g}
g\neq 0
Whakaoti mō g
g=\frac{124}{5A}
A\neq 0
Tohaina
Kua tāruatia ki te papatopenga
200\times 3.1=Ag\times 25
Me whakarea ngā taha e rua ki te 3.1.
620=Ag\times 25
Whakareatia te 200 ki te 3.1, ka 620.
Ag\times 25=620
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
25gA=620
He hanga arowhānui tō te whārite.
\frac{25gA}{25g}=\frac{620}{25g}
Whakawehea ngā taha e rua ki te 25g.
A=\frac{620}{25g}
Mā te whakawehe ki te 25g ka wetekia te whakareanga ki te 25g.
A=\frac{124}{5g}
Whakawehe 620 ki te 25g.
200\times 3.1=Ag\times 25
Me whakarea ngā taha e rua ki te 3.1.
620=Ag\times 25
Whakareatia te 200 ki te 3.1, ka 620.
Ag\times 25=620
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
25Ag=620
He hanga arowhānui tō te whārite.
\frac{25Ag}{25A}=\frac{620}{25A}
Whakawehea ngā taha e rua ki te 25A.
g=\frac{620}{25A}
Mā te whakawehe ki te 25A ka wetekia te whakareanga ki te 25A.
g=\frac{124}{5A}
Whakawehe 620 ki te 25A.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}